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Abstract:

Wavy flows of viscous
films on solid surfaces are considered. The focus is on
approximate decriptions which are hinged
 on a single evolution equation.
Perturbative approaches to constructing such theories are discussed. For
several film
 flows, evolution equations obtained--along with the validity
conditions of those theories--with the multiparametric
 perturbation
approach are reviewed. The results of their three-dimensional numerical
simulations on extended spatial
 intervals are discussed. Some unresolved
fundamental questions concerning such film-flow studies are posed and

discussed.
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Introduction: Film flows and evolution equations
  Our subject matter is the flow of liquid films on solid
surfaces. The force driving the flow is usually gravity and/or an
 externally
applied pressure. One boundary surface of the liquid layer is its interface
with the supporting solid, the other
 a fluid interface. If the
ambient fluid is a dynamically passive gas, the film has a free
surface--as in flows down inclined
 planes or vertical cylinders.
Otherwise, the film has a fluid-fluid interface with the
surrounding active fluid. Such is the
 case in the so-called core-annular
flow (see e.g. [51]), which is a two-fluid flow in a pipe.


One encounters such film flows in nature and in everyday life. Controllable
flows of films are used in industry.
 Naturally, they have been studied for
quite some time (see, for example, [69, 52, 71, 70, 72] for a
considerable history
 of the film flow investigation). Currently, they
continue to be a subject of growing research activity (see e.g. [15]
for a
 recent review of work on a film flow down a vertical wall). Of course, in principle the film dynamics is known: it is
 given by the
familiar Navier-Stokes (NS) equations [supplemented with appropriate
boundary conditions (BC)].
 Usually, however, one is interested less in the
equations per se than in the dynamical fields--velocities, pressures, the

position of the interface, etc.--which are unknown solutions of
the NS equations. These are far from being easy to
 solve: indeed, one has to
deal with a system of several coupled partial differential equations (PDE)
which is
 additionally complicated with the moving boundary--whose dynamical
PDE itself involves unknown fields, the fluid
 velocities. Even with the most
powerful modern computers, such a full NS problem is too difficult to solve,
especially--
as is frequently needed--in extended space-time
domains. Therefore, one would like to have a simpler, solvable
 description
of evolution, provided that it yields a sufficiently good approximation to
the exact solution of the NS
 problem. Ideally, each such simplified
dynamical system should be accompanied by validity conditions, such
that if the
 flow parameters satisfy these conditions, the solutions are
guaranteed to be good approximations to the corresponding
 exact NS
evolutions.


The most favorable case of such a simplification is the one in which the
problem reduces to a single PDE--which as a
 rule is the one for
the thickness of the film. If the solution is found, the theory
yields the velocities and pressures as
 explicit expressions in terms of the
film thickness. However, even if one succeeds in obtaining such a simplified

evolution equation (EE), it still cannot, in practice, be solved
analytically; so one turns to computers. Over a number of
 years, we engaged
in such mathematical modeling and numerical simulations of film flows.
Below, we discuss some
 particular problems we considered, methods which have
been developed, the results obtained, and also some difficult
 questions
which have not yet been answered. (Some of the results presented here have not been published before.)
The
 work of other researchers is touched
upon only inasmuch as it was judged relevant to those issues. Accordingly,
our
 reference list is far from being comprehensive. We sincerely apologize
to those colleagues whose relevant work may
 have been inadvertently
overlooked here.


The rest of this paper is organized as follows. In the next section, we
introduce our multiparametric perturbation (MP)
 approach
and discuss its advantages over previous perturbative methods. In section 3,
we discuss the resulting evolution
 equations and conditions of their
validity obtained with this approach, as well as the results of numerical
simulations of
 the evolution equations for various film flows. In section 4,
some unanswered fundamental questions pertaining to
these
 film-flow studies are
discussed. The last section summarizes the paper.
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An example of the less-formal MP approach at work: 2-D
vertical film flow

 We consider a layer, of an average thickness  (the overbar here and below indicates a dimensional quantity), of
an

 incompressible Newtonian liquid--of a density  ,
viscosity  , and surface tension  --which flows under the action of

 gravity (whose acceleration is denoted  ) down a vertical solid plane (also called ``the
wall''. Here we confine

 ourselves to this particular case of an inclined film for the sake of simplicity, and only consider two-dimensional (2-D)
 wavy flows. Some more general results are given
in section 3.1; we refer the reader to [48] for more results and the
 theory
for the general case, a 3-D flow down an inclined plane.). There is a
well-known time-independent, ``Nusselt's'',
 solution of the NS problem for
the vertical film. The thickness of the Nusselt film is constant (hence,
Nusselt's flow is
 also referred to as a ``flat-film'' solution). The only
nonzero component of velocity is the downward one. It only
 changes across
the film, starting from the zero value at the wall. The free-surface value  of the Nusselt velocity is 

 (where  is the
kinematic viscosity).


We nondimensionalize all quantities with units based on  ,  , and  (As we will see below, exactly two


independent basic parameters appear in the dimensionless
equations and boundary conditions; one can choose e.g.. the
 Reynolds number  , and the Weber number  as such
basic parameters.)


The x axis of our system of coordinates is normal to the solid plane and
directed away from it; the y axis is in the
 spanwise (i.e. horizontal and
parallel to the wall) direction; and the z axis is directed downward. [A
subscript x, y, z, or
 (time) t, will always--whether preceded by a
comma or not--indicate the differentiation with respect to that variable.]

For simplicity (as was mentioned above), we first consider the 2-D flow, so that v, the y component of velocity, is zero.
 The x and z
components of velocity are denoted, respectively, u and w.


In a coordinate system moving (with respect to the laboratory reference
frame) with a velocity V in the z-direction, the
 NS equations (for velocities measured in the laboratory frame) written in the
dimensionless form are (see e.g. [2])


The continuity equation is


The boundary conditions are as follows. The no-slip conditions at the solid
surface are


The tangential-stress balance condition at the free surface is


and the normal-stress one is
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Here, the stress components  are


Finally, the kinematic condition at the free surface is


Let  denote the Nusselt velocity for an imaginary film of constant thickness h which is equal to the local thickness
 h(z,t) of
the real film (which is in agreement with experiments [1]):  . [Note that  depends not only

 on x but also on z and t --through h(z,t).] The reference normal component of
velocity,  , is chosen to satisfy
 incompressibility (3); i.e.,
it is defined as the solution of  , with the no-slip boundary
condition

 . This solution clearly is  .
The above NS problem becomes an exact one for a

 new set of unknowns--h,  ,  , and p--by the substitution  and  (the
remaining
 unknowns p and h are
not changed). For example, the kinematic boundary
condition at the free surface  [Eq. (8)]
 becomes


If one looks into derivations of known evolution equations (EEs), one
realizes that each of them is invariably obtained
 from exactly a kinematic
condition of the type (9), which can be done in the following way.
First, the NS equations are
 simplified by discarding some terms, to arrive
at essentially ordinary differential equations (ODEs) for the
velocities
 and pressure as functions of the streamwise coordinate x [with
the other independent variables entering as parameters
 only,
through h(z,t)]. It is straightforward to solve these simple (albeit
nonhomogeneous) ODEs, since their coefficients
 are constant. Then, one
proceeds to substitute the resulting solutions for velocities (in terms of h ) into the kinematic
 condition. This yields a closed PDE for h, i.e.
the evolution equation. In our derivation, we follow this recipe as well,

but we take care to discard only those terms in the NS equations
which must be dropped if one is to obtain solvable
 ODEs.


Since  ,  , and p are to be found by reducing the NS equations to
an ODE in x for each of these dependent
 variables, it is clear
that the equation for p is the (reduced) x-NS equation: indeed, this is
the only equation (of the full
 NS problem) containing a derivative of p
with respect to x. Consequently,  has to be determined
from the
 incompressibility condition (since it contains  ), which can
be done after finding  from the z-NS equation. The
 order in which
these equations are solved can, in principle, play a role, since in solving
for a particular variable, one has
 to neglect the terms containing those of
the other variables which have not been determined prior to that. After a
little
 investigation, one can see that the most natural order is as follows.


First, one finds p from the x-NS equation, with the BC coming from the
normal-stress balance condition at the free
 surface [for simplicity, the
pressure of the ambient gas has been neglected in the formulation (1-8)]. In this problem for
 p, one clearly has to discard all terms
containing one or more of the unknowns  and  . Next, the z-NS
equation is
 recast into an ODE for  . Here, one has to discard only
those
terms containing  ; the p-term can be retained, as it is
 now a known expression in terms of h. But all terms containing  , except
for the viscous one with  , must be
 discarded as well-- otherwise
one does not get a constant-coefficient ODE in x.


Let us denote by A the characteristic amplitude of the surface deviation  , and let T and L be, respectively,
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 the characteristic
time- and length-scales. Then, for example, from the condition that the neglected viscous term should
 be smaller than the one retained,  , after estimating these quantities in terms of the
characteristic scales,

 one arrives at the requirement  . This is the small-slope condition. Usually, it is rather postulated

 in the ``lubrication'' or ``long-wave'' derivations, but here this
condition arises as a consequence of our ``derivability
 principle''. In
obtaining this condition, we have used the following natural estimates of
the derivatives: for the x-
derivatives, we have  , in the sense that  if  or  , and  if

 (indeed,  for  and the velocities change from being zero at x=0 to their
full magnitudes at x=h;

 hence, the characteristic lengthscale of change is h, which is  ). Also,  ,  , etc. One

 can see that, similar to the small-slope
condition above, the condition  follows; etc. In fact,
one

 can estimate the velocities even before solving the equations.
Substituting such estimates into inequalities demanding
 the smallness of
terms which must be discarded, one finally arrives at the set of independent
conditions for the
 derivation to be justified. These validity conditions can
be combined in the following form:


[One notes that all three of these conditions can be obtained e.g. already
from the requirement of negligibility of the
 term containing  in the
BC for  , Eq. (5).] Due to these conditions, even some terms
which can be retained in the
 equations--and handled, in principle, without
any difficulty--can be shown to be actually negligible. Also, some other

terms are estimated to lead to a negligible contribution to the final
evolution equation and therefore can be discarded as
 well. As a result, one
can see that the expression for p is in fact the solution of the problem
[see Eq. (1) and (6)]


that is


Note that this pressure contains a viscous contribution (the first
term on the right-hand-side) in addition to the usual
 surface-tension part.


The equation for  is the (simplified) z-NS equation:


(Note that we use the system of coordinates of a moving
reference frame,
whose z-directed velocity with respect to the
 solid plane is V=2--that
is equal to the well-known phase velocity of the infinitesimal waves; all
the velocities,
 however,
are measured with respect to the laboratory
frame.) We also have to satisfy the following boundary
 conditions: first,  and second, from the tangential-stress balance
equation at x=h (5), we have

 . The
solution of this problem is
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Next, the equation for  derives from the continuity equation:  , where  is already known (12); and
 the no-slip
BC requires that  The solution of this problem is


One substitutes the expressions (12) and (13) for velocities
in terms of h (taken at x=h) into the kinematic condition (9),

which yields the EE


We have omitted all of the several dispersive terms except for a single
one--the last term on the left-hand-side (l.h.s.)
of
 Eq. (29)--since in the limit
of small deviations  they turn out to be negligible
[see Eq. (15) below]; and if the amplitude
 of  is not small, the equation, in
any case, can only be good as a qualitative model, as we will also
discuss below. The
 solutions of this equation yield a good approximation to
the true evolutions of the thickness h--for some time, at least-
-as long as the conditions (10) are satisfied.


Using those conditions and estimating all of the members of the EE (29) in terms of the current amplitude A, the
 (current) lengthscale L, and the basic parameters, one can see the following facts: If A is not small, the equation can be
 written as simply  (or just  in the laboratory reference frame). Indeed, all


other terms of the EE (29) turn out to be much smaller than the two
selected into the shortened equation above. The
 solutions of this short
equation (called ``the simplest hyperbolic equation'' in [96])
are well
known to exhibit steepening
 of the wavefronts that leads to breaking of the waves in a finite time. It follows that the EE (29) cannot be valid
 globally, i.e. for all time. But one can easily
see that this EE is equivalent to the well-known Benney equation: The
 former
transforms into the latter (in the laboratory reference frame and with the
dispersion term omitted) by the
 substitution of the term  in place
of  (this trick was called the ``trade of time- for space-derivative''
in [2])

 into the second term of (29). Hence, the
large-amplitude waves can be approximated by the Benney equation at
best for
 a finite time--a fact that was established before in [35].
Thus, here from a different direction, we arrive at the same
 conclusion: a
(film thickness) evolution equation which would provide a good time-uniform
approximation to large-
amplitude waves on films flowing down
vertical (as well as inclined, as is discussed below) planes, does
not exist. (This
 is in contrast to films flowing down vertical cylinders, where such an equation does exist: it has been obtained
in [34].)
 For a quantitatively good approximation of such
large-wave regimes of planar films, one has to be content with a less

drastic simplification of the original NS problem, which would contain a system of at least two coupled PDEs--such as
 those studied e.g. by
Chang, Demekhin, and their co-workers (see e.g. [17, 16]). The
domain of validity of such
 evolution systems may clearly be larger
than that of theories hinged on a single evolution equation;
however, the
 difficulty faced in attempting to solve them is correspondingly
more severe, and indeed can approach the formidable
 difficulty of the
original NS system.


[Note that the two equations, (29) and the
Benney one, are not necessarily
equivalent when the validity conditions (10)
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 break down. In
fact, there are indications that our equation might make a better model; we
will discuss this point in
 section 3.1.1.]


The case of small amplitude waves,  is different: here,
one does have a theory hinged on a single

 evolution equation which
nevertheless can yield a quantitatively good approximation. Indeed,
by substituting
 into the general EE (29), one gets


the evolution equation for the small-amplitude waves. This equation has
appeared before in [93]. [It is, however,
a
 particular case of the more
general equation (31) below (which was derived in [48, 47]) that
allows for an arbitrary
 inclination of the film plane to the horizontal and
also for the dependence of waves on the spanwise coordinate y .]


We use the inequality  to transform the general conditions (10) and obtain the local-validity conditions for the


small-amplitude EE (15):


We call these conditions local (in time) since they involve the parameters L and A which, in contrast to the basic
 parameters R and W, can change with time. Indeed, due to the dissipativeness of the EE (15), the system evolves
 towards an attractor and thus essentially forgets
the initial conditions. On the attractor, there can be fluctuations, but no

systematic change in time is possible. Then, following the ideas of [6, 37], the second-derivative term of the Eq. (15)--
which term
is well known to lead to the growth of disturbances--should be
of the same order of magnitude as the
 stabilizing, fourth-derivative one
(while the third-derivative term is purely dispersive: it makes
only a purely imaginary
 contribution to the linear-theory growth rate). Hence,
the (dimensionless) characteristic lengthscale at large times,  ,

 is estimated to be


Similarly, the asymptotic magnitude of the characteristic amplitude  is
determined by the balance between the

 nonlinear ``convective'' term and
either the dispersive term or the capillary one (whichever is larger):
 . Using these estimates, the condition (16) can be written as

 .
Noting that  , we finally can write this as

 . Thus the validity conditions are


These conditions involve only the basic (time-independent) parameters of the
flow. If the basic parameters satisfy these
 conditions, the EE (15)
is valid (yields a good approximation) for all time.
Hence, these conditions may be termed the
 global-validity condition.


We can transform Eq. (15) to a ``canonical '' form-which would
contain a minimum of ``tunable'' constants--by
 rescaling  ,  , and  . We take  and  .

 Dropping the tildes in the notations of variables, the resulting canonical form of the small-amplitude evolution equation  is
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where  .


The way we have derived the above theory is in fact a refinement of the
less-formal version of the multiparametric
 perturbation (MP)
approach used before in [6, 31, 34, 37].
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The leading two orders of the fully formal MP approach:
the strongly
 dispersive case

  In the more formal version of the method (see [31, 32, 34]), one represents the variables of the problem as multiple

series in powers of two (or more in other physical problems)
independent perturbation parameters (this is why we call
 the method\
multiparametric). The choice of the appropriate perturbation
parameters depends on the magnitude of the
 dispersion constant  in Eq. (18):


(i) If  the appropriate small parameters are  and  of Eq. (17). Then the evolution equation and the


approximate expressions for velocities and pressure follow from the\
leading-order equations [which couple together
 the leading-order
coefficients of the (  )-power series of the unknowns]. There
is no need for the more formal

 procedure unless one is concerned with
higher-order corrections to the leading-order results.


(ii) When  the appropriate independent small parameters are  and  : It follows that  since one
finds

 with the proportionality coefficient
being  In this case the (higher-order of magnitude) dispersive

 term
in Eq. (18) can be neglected, leaving behind the KS equation as a
result. The formal MP procedure yields the KS
 equation at the leading order.


(iii) Finally, in the case  we introduce


and


It is easy to see that in terms of the independent small parameters  and  , other basic parameters are given by the

following expressions:   and  where 

 and 


The EE (18) can be rescaled to the form


The leading order equation--which follows by neglecting the terms
multiplied by  --is the Korteweg-de Vries (KdV)
 one,


However, as was shown some time ago [55, 31], the dissipative terms of
Eq. (19), although they are of a higher order,
 nevertheless play an
important role. Namely, it is well known that there is a one-parameter
family of soliton
solutions
 to the KdV equation, and the smaller-amplitude
solitons have a greater width. If one starts with a wide soliton as an

initial condition to Eq. (19), the stabilizing fourth-derivative
term is much smaller than the destabilizing second-
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derivative one, and as a
result the amplitude of the soliton will slowly grow. The soliton
width quickly adjusts to the
 changing amplitude. The width continues to
decrease in this manner until the two dissipative terms of (19) are
finally in
 balance. Thus, these small terms determine the final width, and
hence the amplitude and the velocity, of the soliton
 solution.


Hence, one needs to employ the formal version of the MP approach in order to
determine if the higher-order dissipative
 terms of Eq. (19) have
been found correctly [the answer will be seen to be affirmative in the case
under consideration;
 however, in some cases of the inclined-film
problem the formal analysis can reveal [61] certain corrections to the
 coefficients obtained with
the less-formal version of the MP approach].
This formal MP procedure is as follows.
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Power series


One starts by substituting into the NS problem (1)-(9) the
power series


where  In these series,  are constants, and the coefficient functions (CF)--  ,  , etc.--

depend on (i) x (except for  ), (ii) the
rescaled downstream coordinate  such that


and (iii) on a sequence of time-variables of different scales--  etc.--such that


The exponents of  and  in front of sums in these
series are determined from the results of the preceding less-formal
 MP
analysis (similar to e.g. [32, 34]). The series for the reference
velocities are easily determined from the expressions

 and  , by substituting into them the series (24) for 


Each NS equation acquires the form in which the l.h.s is a
(double) series in the powers of  and  , and the
r.h.s. is 0.
 Requiring that each coefficient of the l.h.s. is equal to
zero separately, we obtain a sequence of problems for the
 coefficient
functions. They can be solved one after another (the higher-order problems
contain as their coefficients the
 CFs found as a result of solving the
lower-order problems). Thus, the MP approach yields a theory which is
``consistent
 to all orders in perturbations'', in the terminology of Ref. [10].
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Leading-order system


One can readily see that the kinematic condition (9) in the leading
order  only determines that  But from

 the  -order of that equation, the leading-order EE is to come:


[(i) For brevity, we denote  as simply H and  as  . (ii) Note that the term  appears in this equation; this


term is eliminated by choosing  ] To express the last member of
this equation in terms of H, one proceeds

 through the equations of the NS
problem, one after another.


Equation (1) in the order  yields a first-order ODE in x for  , viz.  .
The appropriate

 BC comes from the same order of the normal-stress Eq. (6): 

 (where a new type of
notation has been used:  is the notation for the CF of  in the power-series

 expression of  ,
etc.) The solution is 


Next,  is found
from the z-NS equation (2) in order [3,-1],  The BCs are (i) the no-

slip Eq. (4) in order [4,0] and (ii) the
tangential-stress Eq. (5) in order [3,-1]:  This yields the

 solution  From the incompressibility, Eq. (3) in order [5,0], one finds

 . Substituting this
expression (evaluated at x=1) into Eq. (26), we obtain the


leading-order EE:
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The  -correction to the leading order


The  -correction to the EE involves  and comes from the
kinematic condition,
Eq. (9), when taken one order in 


higher than before, viz. in the order [5,1]. Preliminary, one finds  and  by going through the NS equations

 in the same
sequence as above but taking each at the next
order in  ; e.g. the z-NS equation (2) is used in the order

[3,0]. In the end, one arrives at the equation


(where we have simplified the notations  and  to  and  , respectively). This can be considered to be a


nonhomogeneous
equation for  , and then the constant  can be tuned in order
that the solvability condition on the

 forcing part (the sum of
terms that do not contain  ) be satisfied. (The exact form of that
condition is determined

 only after the BC in  are stipulated;
then, it can be obtained e.g. by multiplying the equation by H,
integrating over the

 coordinate  and the fast time  by parts,
and using the BC.) We note that, if necessary (which does not seem to be the


case in the present problem), one could use a more complicated
arrangement--of the type which was indicated already
 in [34] and is
used for the time t here--for the coordinate z as well, such
that one would have


If the power series (24) for  is substituted directly into
Eq. (9), the leading order [5,0] yields the KdV equation (20),
 and the higher order [5,1] leads to (19). This means that all the
coefficients appearing in the equation (15) (including
 those of
the--possibly, small--dissipative terms) are correct even in the
case of large dispersion.
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Earlier perturbation approaches and the problem of
validity conditions

  To discuss the advantages of the MP approach, we will
consider other perturbation schemes used in derivations of
 evolution
equations (see also section 4.1).
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Long-wave approach

  In early derivations (e.g. [2, 84, 75, 62, 41, 63]),
starting from the pioneering work of Benney [11], the formal series

were in powers of a single local ``long-wave'' parameter  where L is a local streamwise lengthscale of the

 type
introduced above. The principal unknown, the film thickness h, remains, at
least initially, whole (i.e. without being
 expanded in the power series);
and each basic parameter of the NS problem is assigned a certain order (e.g.
the surface
 tension can be  --in most cases, just
implied to be of order  . The EE for h is obtained in the form of
an

 infinite power series


where  are differential operators (containing the
derivatives with respect to the temporal and

 spatial variables). Usually,
the series is truncated to retain only the first two--or, less commonly,
three--terms. If one
 thinks about the possible conditions of validity, it
is clear that the global-validity conditions cannot be formulated in
 this
approach in principle, since the perturbation parameter is not a global,
basic one. The question of local validity
 depends on the nature of the
series which can be convergent or, alternatively, merely asymptotic (see
also section 4.1).
 In the latter case it is only possible to assert
that the approximation is good for  smaller than some threshold
value

 but the exact value of  remains unknown
since the asymptotic series are merely formal ones. [There are

 examples (see
e.g. [74]) where the threshold value of the asymptotic parameter is
really very small in comparison to 1.]
 In contrast, in the case of convergent series (and provided the coefficients are of the order of
magnitude 1), one has a
 geometric-series estimate for the remainder of the
series in question, and the condition that the leading-order truncation

yields a good approximation (i.e. one with the relative error being much
smaller than unity) is just  (where  is

 used in the order-of-magnitude sense--i.e.  means  --as opposite to the asymptotic-order


sense; see [74] for a discussion of the important
difference between the two--which is frequently ignored in applied

sciences. Following
[74], we will use the notation O to denote the expression
``...is of an asymptotic order of...'', while

using  for ``....is of the
order of magnitude of...''). The local condition  is the best that one can obtain from

 such
a longwave (LW) approach.


Also, a number of evolution equations have been derived with the LW approach for non-isothermal films (see e.g. [13,
 78]);
we do not consider those any further, confining ourselves here to
the isothermic case.
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Single-parameter approach

 If there are basic parameters of a nonzero order of
magnitude, such as  above, then one can redefine


the perturbation parameter to be a basic rather than a local one;
e.g.  --as was the case in the work [89] on
 the vertical planar films and in the paper [85] on a flow
down a cylinder. They, in contrast to the long-wave approach
 described
above, do represent the thickness h as a perturbation series similar to
those of other unknown fields.
 Independent variables are as well rescaled
with some powers of the perturbation parameter. We call this
technique the
 (global) single-parameter (SP) approach. Here
(assuming convergent series as discussed above and in section 4.1), one
 can argue that  is the condition of global
validity of the theory. In this respect, we believe the SP approach to be

 a
conceptual improvement (over the LW approach). However, it still has the
drawback that artificial dependences are
 imposed on basic parameters--which
are intrinsically independent--since one requires each of them be  of
one of

 them, viz. of the perturbation parameter (such as the parameter  above). These artificial dependencies between the
 basic parameters
must be included as a part of the validity conditions; they make the
validity conditions to be
 unnecessarily restrictive.


The multiparametric perturbation approach removes those restrictions. As a
result, it justifies the theory for much wider
 parametric domains
(essentially, of a higher dimensionality). For example, it was noted [18] (see also [51], pages 266-
267) that the validity conditions implied by an SP theory of a film
rupture by the van der Waals forces are flagrantly
 violated by the
parameters of realistic films. However, the MP reformulation [32] of
the theory led to a much less
 restrictive domain of validity in the space of
parameters, which easily embraced the realistic films. Thus, in this case

the MP approach was necessary to justify the applicability of the
EE under realistic conditions of possible physical
 experiments.


The desirability of a more rigorous treatment than the above heuristic
perturbation approaches are briefly discussed
 below in section 4.1.
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Three-dimensional inclined-film flow

 The general 3-D flow can be considered quite similarly to the
2-D flow treatment in section 2.1. In addition, one can
 allow the plane to
be inclined to the horizontal through an arbitrary angle  (between 0 and  ); the vertical film of

 section 2.1 is just a
particular case, with  . This most general case was studied
recently in [48] where the

 reader can find more details. Here, we
briefly discuss some of the results.
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General evolution equation; impossibility of a
single-equation description of large-amplitude
 regimes for large times

 For  , there is a component of gravity
perpendicular to the plane. This results in a nonzero pressure in the


flat-film solution. Accordingly, the locally Nusselt pressure  is
introduced in addition to the locally Nusselt
 components of velocity, the
streamwise one  and the cross-film one  . These are given by the
same expressions as
 above (see section 2.1),  and  [now, however,
the thickness may depend on the

 spanwise coordinate y as
well: h=h(y,z,t)]; similarly, one defines  .
Here, the Reynolds

 number R is defined with the generalized interfacial
Nusselt velocity  [above,
we denoted 

 the value of  for the vertical case,  ]; also,  (along with  and  ) is used
here to nondimensionalize the

 formulation of the problem equations, the same
way as  was used for the vertical case above.


The new dependent variables are thus  , v,  , and  .


One first solves the x-NS equation, with the normal-stress BC at the free
surface, to find  :


(here  ).
This pressure clearly contains a viscous contribution in addition
to the usual

 surface-tension part (and the reference pressure  is of a
purely hydrostatic origin). Next, the equations for v,  , and
 are solved, in that order. We do not write these results here; they can be
found in [48]. Finally, by substituting the

 velocities (taken at x=h ) into the kinematic equation, one arrives at the EE which is the
generalization of (29) above:


Also, the theory yields the local-validity conditions [a generalization of
Eq. (10)]:


where we have assumed, for simplicity, that the lengthscale in the y
direction is not much smaller than L, the
 lengthscale of the
solution change in the z direction; such so far has been the case in all
experiments. [A one-
dimensional version of the EE (29)--which also lacked the last, odd-derivative term--appeared before, e.g.
in [62]. Also,
 similar to Eq. (29), we have omitted all the
dispersive terms other than the last term on the l.h.s. of Eq. (29).] The
 solutions of this equation yield a good approximation to the true
evolutions of the thickness h as long as the conditions
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 (30) are
satisfied.


Similar to our discussion of Eq. (29), the two equations, (29) and the Benney one, are not necessarily equivalent when
 the
conditions (30) break down, and there are indications that our
equation has a chance to avoid the explosive solutions
 which are known (see
e.g. [50, 81, 83]) to mar the Benney equation. Indeed, it is the
term with the highest power of h
 (in fact,  ) in its coefficient which
causes the explosion in the Benney equation; but our  -term enters with
the
 opposite sign to the one in the Benney equation. Thus, although
neither of the two equations is capable of a
 quantitatively good
description of the large-time behavior, the EE (29) might be a
better choice to be used as a
 qualitative model for large-amplitude
waves. This possibility might make this equation worthwhile of a further

investigation (which we have not attempted as yet).
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Evolution equation for small-amplitude regimes


For small amplitude-regimes, we have  Substituting  into the general EE (29) and

 neglecting terms which are
relatively small [because of (  ] yields the following
evolution equation

 governing the small-amplitude waves:


where by definition  . From the linear
stability analysis (see below) one can see that to have an

 instability,
which is necessary for any interesting nonlinear behavior, one needs  We will always assume this

 condition to hold. It follows that  . One can use this inequality together with
the condition

 to transform the general conditions (30),
which leads to the local-validity conditions for the small-amplitude EE

 (31):


The analysis of the derivation of the EE (31) shows that the third,
destabilizing term has its origins in the inertia terms
 of the NS equations.
The two stabilizing terms, the fourth and the fifth, are due to the
hydrostatic and capillary (i.e.
 surface-tension) parts of the pressure,
respectively. Finally, the last, odd-derivative, dispersive term is
generated by the
 viscous part of the pressure. Such a term also appeared in
the EE which was obtained by Topper and Kawahara [93]
 who assumed the
plane to be nearly vertical (as a result, the hydrostatic term was absent in
that equation): They used
 the small angle of the plane with the vertical as
their (single) perturbation parameter. Our derivation shows that this

assumption is unnecessary. One can see that for an arbitrary inclination  (and any value of W), provided R is close to

 (so that  is sufficiently small), the equation (31) can be good, with its dispersive term being not

 small. At the same
time the hydrostatic term can be large (but one needs a sufficiently large spanwise lengthscale Y for
 this, viz.  ). If
the dispersive term is omitted in the equation of Topper and Kawahara, it
becomes the one

 obtained by Nepomnyashchy [77]. The one-dimensional
version of the latter is just the Kuramoto-Sivashinsky equation
 [64, 87]. Thus, all of these equations--as well as the Zakharov-Kuznetsov equation
[98] (see also [65])--can be obtained
 as certain limiting
cases of the EE (31).


Because the EE (31) is dissipative, the system evolves towards an
attractor. Thus, it essentially forgets the initial
 conditions. On the
attractor, there cannot be any systematic change in time (although
fluctuations around the constant
 averages may have arbitrarily large
amplitudes). Consequently (as was first argued in [6, 37]), the
destabilizing inertia
 term and the stabilizing, capillary one should be of
the same order of magnitude. Hence, an estimate of the
 (dimensionless)
characteristic lengthscale at large times,  follows:
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Similarly, the balance between the nonlinear ``convective'' term and either
the dispersive term or the capillary one
 (whichever is larger) determines
the asymptotic magnitude of the characteristic amplitude:

 . With these estimates, one transforms the condition (16) to the form

 . One can
finally write this as  by
noting that

 and  . Thus the global-validity conditions can be written as Eq. (17)


again, but with the generalized definition of  given by Eq. (33).


The transformation of Eq. (31) to a ``canonical '' form is
accomplished by rescaling  ,  ,  ,

 and  with  and  . The resulting small-amplitude evolution equation (with


the tildes in the notations of variables omitted) is


(with definitions  and  . This is the generalization of Eq. (18).


Looking at the linear stability properties of Eq. (34), one
substitutes the normal mode
 into the linearized version of Eq. (34). This yields the growth
rate:

 . From  we find the
streamwise wavenumber 

 corresponding to the maximum growth rate (at
fixed j):  . Hence, the maximum growth rate

 is


One can see that, for every fixed j, this  is a (linearly)
decreasing function of  . The results of the linear stability
 theory
are useful for understanding certain results of numerical simulations (see [47, 48]) of EE (34).


The same problem has been treated earlier by Krishna and Lin [63]
with the LW approach (see also [84]). They derived
 a Benney-type
equation in the series form (28). They had cited explicitly about one
hundred terms of that equation,
 among which all the terms of Eq. (34) can be found. However, as the MP derivation establishes, only a small
number of
 those terms are essential and should be retained in the equation.
All the other terms can be neglected under conditions
 (32) or (17), i.e. when the equation can yield a good approximation.
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Numerical studies of evolution equation


We [48] have numerically simulated the dissipative-dispersive
equation (34) with periodic boundary condition. Below,
 we discuss
some preliminary results. It seems plausible that the results will be
insensitive to the exact form of the
 boundary conditions and the size of the
integration domain provided the dimensions of the domain are sufficiently

large; namely it should include many ``elementary structures'' (we note that
similar simulations give ``surprisingly good
 results'' [44] for
certain problems of the boundary-layer wave transitions). Accordingly, we
solved Eq. (34) on extended
 spatial intervals,  and  , with  and  .


We used spatial grids of up to  nodes and employed the
Fourier pseudospectral method for spatial

 derivatives, with appropriate
dealiasing. Time marching was done (in the Fourier space) with a third-order
Adams-
Bashforth and/or Runge-Kutta methods. The results were verified by
refining the space grids and time steps; by
 observing the volume
conservation,  ; etc.


Some of our initial conditions were motivated by the experiments [72]: these initial conditions
modeled the inlet
 conditions of their experiments [see Eq. (36) below].


Below, we discuss some results of our numerical simulations, such as (i) the
effect of dispersion on the large-time
 behavior of the film surface near the
attractor and (ii) the dependence of the transient states on the wavenumber
of the
 initial ``forcing'', as compared to the experiments of Liu et
al. [72].
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 Unusual patterns on strange attractors for strongly
dispersive falling films


In this section, we consider the most unexpected result of our numerical
simulations. Namely, during our studies of the
 strongly dispersive
cases of Eq. (34),  we found highly nontrivial
patterns (of the film surface) persisting for all

 large times. The system
evolves toward these self-organized states starting from the small-amplitude
(3-D) white-noise
 surface (whereas with the same, random initial
conditions, looking at the large-time states of the surface in the case of

small dispersion, we see no ordered patterns). This contrasts the
spatial patterns studied up to now in fluid-dynamical
 experiments--as well
as in solid state physics, nonlinear optics, chemistry, and biology--which
invariably were almost
 periodic, at least locally (see e.g. [22]).
Our results indicate that patterns of quite a different nature can exist on

attractors of driven dissipative-dispersive systems. These patterns [48, 47] consist of two subpatterns of localized
 soliton-like
deviations of the surface. One of these subpatterns is a V-shaped array of
larger-amplitude bulges on the
 film surface. Those move in a
``sea'' of smaller-amplitude bumps which constitute the second
subpattern. Each of the
 two subpatterns spans the entire domain of the flow
and moves as a whole along the z coordinate axis. However, the
 velocity of
the bulge formation is different from that of the bump subpattern, so one
subpattern ``percolates'' through
 the other.


Figures 1 through Fig. 3
illustrate these points. A snapshot of the film
surface at t=3200, for a vertical film (i.e., 
 ) and with  (and p=q=16) appears in Fig. 1. (Note that in Fig. 1 the amplitudes of the structures--which in

reality are all small-slope--are exaggerated, due to a different scale
of the x-axis.)
The evolution of ``energy''

 shown in Fig. 2
demonstrates the time t=3200
the film waves have approached their asymptotic state

 in which there is no
further systematic change (although chaotic undulations of the energy are
evident).

Figure 1: Snapshot of the pattern on an attractor of Eq. (34) with  (i.e. the scaled surface of a film flowing down
 a vertical plate,
here--down the page, with illumination from the top left),  and periodic boundary conditions

 on  : a view in an oblique
direction, for t=3200. 
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One can see the above-mentioned two-stream nature of the pattern in Figures
3(a) and 3(b). The V-shaped formation
 consisting of 13 large bulges (see
also Fig. 1) moves down between the two snapshots shown [the earlier-time
one in
 Fig. 3(a) and a later-time snapshot in Fig. 3(b)]. The
small-amplitude background subpattern moves uniformly as well,
 but in the opposite direction (in the moving reference frame of the observer).
One can see also that the bump subpattern
 slowly changes with time. (We have
also made a computer animation in which one can clearly see these motions of
the
 two subpatterns.) It had transpired that one component of this
dynamical, spatiotemporal pattern, viz. the bulges, has
 already been observed by the authors of Ref. [92], who performed the simulations
of the vertical-film equation with

 for  (In
fact, they simulated a dissipative-dispersive equation [93] in which
the  term of

 Eq. (34) was missing, which happened because
of a certain--unnecessary, as we discussed above--assumption on which

their derivation was based.) However, as far as we know, the authors of [92] used only contour plots as their graphics
 tools, and overlooked the
bump subpattern. Thus, the entire complex, dynamical character of the
two-phase pattern
 remained undiscovered.

Figure 3: (a) Cross-stream view of the pattern shown in Fig. 1. (b) Same as
in (a) but after a time interval  .
 Note that the vertical
motion of the V-shaped formation of bulges from (a) to (b) is in the
opposite direction to that of
 the bump pattern.



Figs. 2 and 3
confirm the estimates of characteristic quantities obtained
with the term-balancing considerations (see [48,
47] for more on
this point).


For the 1-D version of Eq. (34), a perturbation theory of weak
interactions (e.g. [9, 8, 42, 27, 56]) of the ``pulses'' (see
 [55]) was
developed. It is based on soliton solutions of the ODE describing the pulse
in a certain reference frame. The
 soliton, or at least its small outer
``tails''--which are responsible for the weak interactions--are found
analytically. In
 contrast, no analytic solution is available for a solitary
3-D bulge. Therefore, the prospects for an interaction theory of
 the 3-D
bulges appear to be uncertain at best.

Figure 2: Evolution of the surface deviation ``energy''  from an initial small-amplitude ``white-noise'' surface

 to an attractor of Eq. (34). The snapshots of Figs. 1 and 3 were taken near the end of this run. 
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 should be sufficiently
long so that the waves propagating from the inlet could have enough time to
approach the
 attractor. It is not difficult to find that with  mm, the radius  cm, and with the restricting conditions (17), in

 order for the cylinder to be not too long, the liquid should
be sufficiently viscous, in fact several hundred times as
 viscous as water.
This can be easily achieved with e.g. a glycerin-water solution. [It is
interesting that one can see a
 straight row of bulges in the photograph of a
film flowing down a cylinder in Fig. 2
of Ref. [12]; however, the  -

condition of validity (17) was not strictly satisfied there.]

 Similar to Eq. (34), we [29, 36] have derived an evolution equation for a film which flows down a vertical cylinder (see
 Eq. (46) in section 3.2.2). The only essential difference between the two EE is the opposite sign of the  term.
 However, this term disappears in the case of a vertical planar film, as well as in the limit of an infinitely large radius of
 the cylinder. According to our simulations, the corresponding 
 variable  is changed to  so that 

 -term of the annular-film equation (in which the
 ) is sufficiently small even for p as small as p=5, so

 that the results essentially coincide with those of the  version of Eq. (34). So, physical experiments with films
 flowing down vertical cylinders can verify the theory which leads to the planar-film EE (34). However, the cylinder

 One observes that the bumps incessantly collide with the bulges. These interactions are seen to be (almost) reversible,
 like interactions of KdV pulses (e.g. [97]). This contrasts with the irreversible coalescences of 2-D pulses discovered in
 [38] and [59] for highly nonlinear dissipative equations.

 It has been implicitly assumed (see section 4.1) in the derivation of the global-validity conditions for the EE (34) that
 the solutions of that equation remain bounded. Our simulations justify that assumption. Also, the amplitude of the
 solutions turns out to be of the same order of magnitude as its estimate obtained by the pairwise balance of terms in the
 evolution equation.

 These simulations also confirm that the large-time behavior of the solutions of (34) is essentially insensitive to the
 initial conditions: Every solution evolves toward an attractor (whose nature is solely determined by the basic
 parameters of the NS problem).
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Transient patterns: Qualitative agreement of
simulations with experiments


As was mentioned above, the large-time behavior of the film is insensitive
to the initial conditions. In contrast, the
 transient states do ``remember'' the initial condition: the film surface exhibits a
variety of patterns as one varies the
 initial conditions. We studied the
transient states primarily in connection with the recent experiments of Liu et al. [72],
 in which the flow (down an inclined plane) was
perturbed at its inlet with sinusoidal pressure variations having a fixed

frequency f. In some of their experiments, in addition to this
single-frequency ``forcing'', they used a secondary forcing
 at the
subharmonic frequency f/2, with an amplitude considerably smaller than
that of the primary forcing. (The
 objective for the secondary forcing was to
enhance possible broad-band subharmonic resonances). We modeled this
 inlet
(possibly, two-frequency) forcing by the initial condition


(where  ,  , and  are
independently generated random phases), with  and 

 . (The nonzero  takes into account the fact that in practice the
monochromaticity of forcing is always imperfect, as

 well as its axial
symmetry.)


For this series of simulations, we have used in most cases the values  and  which are fairly typical
 of the
experiments of Ref. [72]. However, it turns out that the values of
parameters in those experiments lie somewhat
 outside the domain of validity
of Eq. (34). [Since we are dealing with transient states here, one
should check the local-
validity conditions (32). One finds that the
parameter  can be as large as 2 or 3--while it should be
much

 less than unity for our equation to be quantitatively good.]
Nevertheless, as we will see below, the patterns observed in
 the simulations
turn out to be quite similar to their counterparts in the physical
experiments [72].


When the wavenumber k of the primary forcing is close to the neutral
wavenumber (i.e. one for which the growth rate
 s=0), which is k=1 (for
the 2-D modes, j=1), and in the presence of the secondary forcing at the
subharmonic frequency
 [i.e.  in Eq. (36)], we observe
in our simulations that the oblique subharmonic interacts very strongly with


the fundamental. Fig. 4 shows this for an idealized initial condition,


with  ,  , and  (while q=16). Figure 4(a)
shows the strong interaction with the

 exchange of energy between the
fundamental and the (detuned) oblique subharmonics. Plotted there are the
``energies''
 of the Fourier modes, defined as


where  is the Fourier coefficient:
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The surface exhibits checkerboard patterns such as the one in Fig. 4(b). One
can see that it resembles the checkerboard
 pattern of ``cat eyes'' in Fig.
12 of Ref. [72]. However, if one employs the full initial forcing (36), then other modes
 become significant, as is evident in Fig. 5(a),
and while the period doubling is obvious there, only an
imperfect
 checkerboard
pattern is observed. (This was further explained in [48] with a
simple analysis of the spatial structure of
 the principal modes.) However,
the property of period-doubling remains very robust when the forcing is
sufficiently
 close to the neutral wavenumber. But as the forcing wavenumber
decreases away from the neutral, the intensity of the
 interaction between
the fundamental and the subharmonic dies out. Qualitatively similar
observations were reported in
 the experiments by Liu et al. [72].

Figure 4: Subharmonic interaction of Fourier modes in a run with the initial
condition (37) whose frequency of primary
 forcing is close to the
neutral one (  ). (a) Evolution of energies of the principal
Fourier modes (the
 numbers shown in the legend next to each line are the
corresponding values of m and n, in this order). Note that since

 is an odd number, there are two ``almost-subharmonic'' modes, one with n=7
and the other with n=8. (b)
 Checkerboard pattern of the film surface for t=21 (cf Fig. 12 of [72]). The interval between two neighboring

isothickness contours is 0.6.


Figure 5: Similar to Fig. 4 but for a run starting from the general initial condition (36), with q=47 and  . Note

 that
the checkerboard-like pattern in (b) is not perfect, but the streamwise
period-doubling is clear (t=14.6; only one
 quarter of the streamwise
extent of the periodicity domain is shown; the interval between two
neighboring isothickness
 contours is 0.6).



With one-frequency initial forcing, there is a certain stability window:
When the forcing wavenumber k is between 0.77
 and 0.84 and  , the amplitude growth saturates and the final state is a
stationary propagating 2-D wave. These
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and obtain from Eq. (34), for N=2, the Galerkin system  and

 , where  . Hence, for a stationary state  , and

 assuming  to be real, we find


Similarly, a three mode equilibrium including the third harmonic  can be found analytically (see [48]). To

 analyze the linear
stability of such equilibria, one considers a normal mode of the Bloch type
(introduced a long time
 ago for the stationary wavefunctions of an electron
in the periodic field of the crystal lattice; see e.g. [66]),


After substituting  H into Eq. (34) and
linearizing it, one obtains an eigenvalue problem for P. [Such
 ``Floquet''
analysis was applied before to film waves (e.g.
in [49, 17]), and
was used earlier in other hydrodynamic
 problems, see e.g. [44, 57]. We
(see e.g. [33, 39, 88, 99]) believe that in this context it is more
appropriate to mention
 Bloch's rather than Floquet's name.] Such an analysis [48] confirms the stability to all 3-D disturbances for the values

of the parameters indicated above. For the forcing frequencies slightly
outside of the stability window, it yields growth
 rates which lead to valid
estimates of the lifetimes of the quasi-stationary states. However, often
times such a linear
 stability analysis fails to predict what patterns will
emerge, because the nonlinearity quickly makes dominant other
 modes than
those which govern the linear stage of instability. Thus, the usefulness of
the linear theory is quite limited
 here.
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 stationary waves consist mainly of the linearly unstable fundamental and a few of its stable overtones with smaller
 amplitudes. Such stationary waves were constructed by a number of researchers (e.g. [24, 49, 75, 94, 95]) for different
 film evolution equations; however, it appears that most of the huge number of such stationary solutions are significantly
 unstable; only a small number of them are observed in experiments--and only when artificial forcing is present. In our
 case, the stationary waves are well approximated as two-mode equilibria consisting of the unstable fundamental and
 one stable overtone. Assuming for simplicity that dispersion is negligible, we approximate  as the Fourier series
 truncated at the Nth member,




In Ref. [48], the reader can find more results (some of them
presented in graphics form) of the analysis and numerical
 simulations of the
stationary waves and their stability. In addition, there are results of
simulations of ``natural'' waves,
 i.e. those which develop from random
initial conditions, corresponding to experiments without any forcing.


When the forcing wavenumbers fall below the stability window, we observe
evolution which resembles the
 ``synchronous instability'' of experiments [72]. Figure 6(a) comes from a run with the  and  the

 values calculated with the parameters of the
corresponding physical experiment. Evidently, the oblique modes with
 m=2
become important; as a result, a quasi-stationary 3-D state
develops. The resulting film surface pattern is shown in
 Fig. 6(b). It
should be compared to the experimental pattern found in Fig. 18 of [72]. Some further discussion of the
 synchronous patterns is found in Ref. [47] (They have been also observed [49] in simulations of the
Benney equation
 on nearly-minimal domains of periodicity.)

When lowering the wavenumbers of the one-frequency forcing even further, we
find that the film surface develops
 solitary wave-like transient
patterns (see Fig. 7). To a certain degree, these patterns resemble
those seen in Fig. 2 of
 Ref. [72] obtained in low-frequency forcing
experiments [however, those experimental solitary waves are seen to have

large amplitudes which do not quite satisfy the condition  which
further lowers the expectations of agreement

 with simulations of Eq. (34)].

One concludes that these results of simulations of Eq. (34) qualitatively agree with the experimental findings of [72]

regarding the observed types of transient patterns on inclined films as well
as the correspondence between the pattern
 types and the ranges of forcing
frequency.
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Figure 7: ``Solitary wave'' pattern in a run with a low-frequency forcing (the initial condition (36), with q=47 and
 ;  ). (a) Evolution of energies of some principal Fourier modes (the numbers shown in

 the legend next to each line are the corresponding values of m and n, in that order). (b) The wave profile at t=19.3. Only
 a part of the train of four solitary waves is shown (cf Fig. 2(b) of [72]). 

Figure 6: 3-D ``synchronous instability'' of initially (almost) 2-D waves, Eq. (36) with  , at lower forcing

 frequencies (  ). (a) Evolution of energies of four principal Fourier modes. Note the quasistaionary-

wave state beginning at some time after t=120. (b) The surface pattern at t=164 (  : cf Fig. 1(a) of

 [72]). The interval between two neighboring isothickness contours is 0.4. 



Flow down a vertical fiber
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Large-amplitude regimes

  A theory (of such film flows down vertical cylinders) hinged
on a single evolution equations was constructed in [34]. It
 was
motivated by the experiments [82] on flows down vertical fibers. The
less-formal version of the MP approach was
 used to derive the evolution
equation for the 2-D waves,


Here the modified Weber number


where  is the radius of the cylinder and the other notations
have the same meaning as in section 2.1. The
 nondimensionalization
is based on  and the ``Nusselt'' velocity  (where   is the kinematic

 viscosity); however, h is in units  . For  the following parameters were identified which
are required to

 be small for the (global) validity of the theory: the aspect
ratio  and 

 the modified Reynolds number (the notations here are different from [34]). The appropriate formal MP series (in
 powers of  and  )
were also pointed out, and the expressions for velocities and pressure in
terms of the film

 thickness were given. For  the theory involves
three independent small parameters: S,  and


The EE can be written in terms of the surface deviation  (in
the reference frame moving with the velocity

 ):


Also, one can analyze restrictions on the experimental parameters following
from the validity conditions for practically
 available working liquids [34].


In [59], we reported extensive numerical simulations of the EEs (40) and (42) on extended spatial domains
 (where 7<q<41) with periodic boundary conditions. We used (pseudospectral)
numerical methods

 similar to those of section 3.1.3 including the
appropriate (``2/5'') dealiasing; details can be found in [59].


When a
simulation started from small-amplitude random initial conditions, the
large-time behavior depended mainly on
 the value of the control parameter S
(provided the periodicity interval was sufficiently large, i.e.  For very

 small S, the surface evolution has (chaotic) KS character (not
shown; see e.g. [19, 20, 46, 80]), which is in accordance
 with theoretical considerations (see [59]). For larger  first a train of saturated pulses with 

 amplitudes grows, and the further slow evolution proceeds by various
interactions of the pulses. The most remarkable
 discovery in this respect
was the irreversible coalescence of pulses; a pulse can grow to a large
amplitude by a cascade
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 of such coalescences, as in Fig. 8. Earlier,
such coalescences were observed in physical experiments [70], but to
the
 best of our knowledge the work [59] was the first observation of
pulse coalescences in any numerical simulations of
 PDEs.

Figure 8: Evolution of the surface deviation governed by Eq.
(42)
for a large value of the control parameter (S=3.0),
 with a
``white-noise'' small-amplitude initial condition on an extended interval (q=8.0). After (by t=12) the initial pulse
 growth has saturated and a
pulse train has formed, a pulse grows by a cascade of coalescences.
(From [59].)


Figure 9: Pulse train evolution for two intermediate
(subcritical) values of S in (42). (a) S=0.4 (q=8.0). (b) S=0.8
 (q=20.0).
(From [59].)


Figure 10: Growth of the amplitude  of a pulse in a
simulation of Eq. (40) (S=2.0; q=16.0).
(From [59].)
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 suggests
that the Hammond equation is inapplicable for cases with even very weak (but
nonzero) average flow.


The EE (40) can be
formally obtained from a Benney-type evolution equation derived in [35]
with a LW approach.
 Before that work, such an equation for the annular
films, the analog of the well-known Benney equation for planar
 films (see
also section 3.1.1), was missing in the literature. The key to its
derivation in [35] was the assumption of large
 radius of the cylinder.
Previously [68, 2], this problem was considered without that
assumption, which led, after very
 involved calculations, to extremely
complicated equations (and the reader should be warned that there are typos
in the
 results of Ref. [68]). One can try to obtain the large-radius
EE (40) as a limit of their results, but such a derivation
 appears
to be very complicated and less illuminating than the one in [35] (the
authors attempted the former derivation
 once, but had to give up).


We note that in [35], only the first two orders of
the Benney-type equation were given explicitly (we remind the reader
 that
any Benney-type equation has the form of an infinite power series in the
small longwave parameter

 , as was also
discussed in section 2.3.1):


[Here (h,t,z) are in units of  where  is the characteristic lengthscale in the axial
direction, 

 and  ] By now, the next-order,  -correction to this equation [such
as that found by Nakaya [75] for the

 planar Benney equation] is also
available [73]. One of its members can be shown to correspond to the
dispersive term
 of the small-amplitude EE considered immediately below.
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 At  , the EE (40) was noted to have the Hammond [43] limit,

 This EE describes the film evolution in the absence of both gravity and the average axial flow. However, our results
 with S even as large as 20 (the largest value we were able to employ) were different from those for the Hammond
 equation (a notable difference was that for Eq. (40) the pulse coalescences persisted for large values of S). This

 This is in the form of the Quéré law, who found that the\ critical average film thickness, defined as a thickness value
 below which no discernible change (in time) of the local film thickness is registered, is proportional to the cube of the
 fiber radius and does not depend on the film viscosity. In fact, he gave precisely the formula (43) with a single
 difference: it had a constant he called  in place of (1.5  ), and Quéré's experimental value was 

 Thus there is an agreement between our simulations and the experiments [82]. Figure 10 indicates that an isolated
 mature pulse does not grow between coalescences, contrary to some assertions of Ref. [53] who also simulated Eq. (40)
 (see [59] for further discussions regarding that work).

 It turned out that the pulse coalescences could happen only for sufficiently large S, greater than certain critical value 

 (At intermediate values of S, the pulse interactions have the character of particle-like, quasielastic collisions, as in Fig.
9) The simulation results led to  From Eq. (41), one obtains



Small-amplitude evolution equation

 
The first EE for small-amplitude waves on
falling annular films was obtained in early 1980s by Shlang and
 Sivashinsky [85] who used a SP approach. However, by applying the MP machinery,
we [36] found that there is a more
 general equation of that kind; its
canonical form is (cf section 3.1.2)


Here  is the azimuthal angle, the constant 

 and --in terms
of the original, based on  and  units--the

 new units
for [  ] are  .


The global-validity conditions for this equation are


The equation of Shlang and Sivashinsky [85] is obtained if the last
term in Eq. (46) is omitted. Their derivation
 corresponds to the
following choice of powers of the single perturbation parameter (say,  ) for the basic

 parameters:


It follows that  i.e. the  -term should be
kept in the EE (46), but the last term can be neglected since

 W  and therefore  is small:  . However (as was discussed in

 general in section 2.3) these SP conditions are unnecessarily restrictive. There are many
other choices of SP powers
 which satisfy the less restrictive MP conditions (47). For example, changing just two of the SP stipulations (48), to

 and  yields the
general dissipative-dispersive equation (46). Another choice, 

 (``large'' R!) and  gives the EE
of [85] again (but with the amplitude  instead
of their  ).


The presence of two terms in the expression  reflects the fact that there are two destabilizing


influences, which are (i) inertia [the same as for the planar film, Eq. (34)] and (ii) the transverse-curvature part of the
 capillary pressure
(which does not exist for the planar film). Their balance with the
stabilizing longitudinal-curvature
 part of the capillary pressure determines
the longitudinal (i.e. axial) lengthscale. If


the capillary destabilization is negligible in comparison with the curvature
one, and the EE reduces to that of the planar
 film (34). One can
readily find that in this case  and  also, the condition of

Page 37



 negligibility of dispersion,  can be written (recall the relation  ) as  the same as

 for the vertical planar film (in this case, the validity
conditions (47) reduce to  ). In the opposite
case, i.e.

 when  is sufficiently small, so that the dispersive
effects cannot be neglected, the validity condition is just

 From the above considerations,
the ``cylindricity'' of the film can play a role only when b is
sufficiently small--

 or less. Otherwise, we have
essentially the problem of a planar vertical film (with the restriction that
the

 boundary condition in the spanwise direction must be periodic.) Such
appears to be the case in all experiments
 documented in the literature (e.g. [62, 12, 54])
with the exception of [82]. The analysis of the above
condition for the
 practically available liquids shows that for the cylinder
curvature to be essential, the cylinder should be a microscopic
 fiber or the
film a very viscous liquid (or both). In this case,  . The
condition of dispersion negligibility

 becomes


When curvature and dissipation are essential factors, the (single) validity
condition is  When curvature

 and dispersion are both
essential, the validity condition can be written in the form  One can see that in fact

 in all those four cases (of possible domination
outcomes in the competing pairs, inertia versus curvature and dissipation

over dispersion)--that is in all cases where the EE (46) (or its
simplifications, such as the EE of Shlang and Sivashinsky
 [85]) is
valid--it follows (from the domination conditions and the validity
conditions) that


(This has in fact been used to simplify expressions for coefficients of Eq. (46): in some places where (b+1) enters, we
 changed it to just b.)

Figure 11: (a) Snapshot of the surface of a film (flowing down a cylinder) which
develops from a small-amplitude
 white-noise initial surface in a simulation
of evolution governed by Eq. (46). Due to nonlinearity, azimuthal variations

have grown, despite the stability of nonaxisymmetric normal modes of the
linear theory. (b) Evolution of modal
 energies; the snapshot of
(a) corresponds to the end of this run.
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 by Deissler et al. [23]. It is
not surprising that in those simulations the azimuthal dependences
developed: for their
 values of parameters, there are linearly unstable
non-axisymmetric modes, as one can easily see from the linear stability

analysis. However, only axisymmetric modes are unstable for  Nevertheless, the azimuthal structure appeared

 in our simulations for  as small as  (see Fig. 11). The explanation is that some
modes, of the azimuthal
 wavenumber equal to unity, are only ``weakly
stable'': their ``decay'' rate is exactly
zero (see Fig. 12), i.e. they
are
 neutrally stable (or, one can say as well, neutrally unstable).
Therefore, the nonlinear interaction with unstable
 axisymmetric modes can
easily grow these nonaxisymmetric ones.


However, the modes with azimuthal wavenumber higher than unity are strongly
stable and hence do not grow. We
 believe this is the reason that we did not
observe any coherent structures--such as the bulges of Fig. 1-- in our
strong-
dispersion simulations,  for  as was mentioned
before, Fourier modes with many azimuthal

 wavenumbers (and many axial ones
as well) are needed in order to make such a coherent structure.
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Figure 12: Maximum (over the axial wavenumbers) growth rate of normal modes (with the indicated values of the
 azimuthal wavenumber m) of linearized Eq. (46), as a function of the ``curvature parameter''  . 

 For the equation of [85], that is Eq. (46) without the dispersion term, 3-D simulations on extended domains were done




Small-amplitude waves in core-annular flows


A perfect core-annular flow (CAF) is axially symmetric and unidirectional:
Two immiscible fluids fill a circular pipe
 and flow parallel to its axis.
The interface between the annular fluid and the core one
is a perfect cylindrical surface.


However, it is well known that the surface tension at a cylindrical
interface is a destabilizing factor (e.g. [25]). The
 jump in
viscosity at the interface can be destabilizing as well. The
linear-stability studies of CAFs have a long history
 (see e.g. [52]).
In [51], the numerical studies of D. D. Joseph and his collaborators
are presented in detail. They have
 greatly extended our knowledge of linear
stability properties in different domains of the space of basic parameters
(see
 also [90]).
They also studied CAFs experimentally, and compared the results with the
linear theory. However,
their
 nonlinear Ginzburg-Landau-type theory yields
nearly monochromatic waves modulated on large lengthscales. Such
 waveforms
were never observed in experiments--presumably because the parametric
domains of validity were
 extremely narrow.


We [37] have suggested a nonlinear MP theory for core-annular film
flows (CAFFs; in which the annular fluid is a
 film, i.e. its thickness is
much smaller than the core radius) which yielded interfacial waveforms in
closer resemblance
 to those observed in experiments (this work is discussed
in [51] as well). The paper [37] was, to the best of our

knowledge, the first nonlinear study of CAFFs from the first principles of
hydrodynamics. (The nonlinear evolution of
 core-annular configurations with no basic flow was considered earlier by Hammond [43].)


In [37], we studied the horizontal CAFF, driven by an axial
pressure gradient, and such that the effects of gravity are
 negligible
[which is the case when a certain--called Bond's--number (whose definition
can be found e.g. in [37]) is
 small, due to either the closeness of
the densities or the small thicknesses of the liquid layers]. We derived
(with the
 less-formal version of the MP approach) an EE for small-amplitude
regimes in which the influence of the core
 disturbances on the film can be
neglected. This EE turned out to have the structure of the KS equation. The
global-
validity conditions were obtained as three inequalities which can be
written in the form


and


(where b is the pipe radius,  the velocity of the basic interface,
and the rest of the notations are as before; all

 quantities here are
dimensional, but, for brevity, we have omitted the overbars). This work has
demonstrated that the
 presence of basic flow can lead to saturation of the
capillary instability, and thus keep from breaking down the core-
annular
topological type of the arrangement of the fluids.


Similar KS evolution equations were obtained for small-amplitude cases of
two-fluid horizontal flows [6, 86, 45]. In
 [6], it was
shown that the basic plane Couette flow can defy the Rayleigh-Taylor
instability, thus keeping as
 topologically invariable the arrangement in
which a film of a lighter fluid is at the bottom. (Similar results
were
 obtained for a sheared film of a single fluid destabilized by molecular
forces [5]).The other two papers considered a
 plane Poiseuille flow
of two fluids in a channel (see [52], section
IV.8, for a review).
Recently, Benney-type equations
 were obtained for two-fluid flow in an
inclined channel by Tilley et al. [91]. Such equations for
large-amplitude cases
 can only be good as qualitative models, as was
discussed above.
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A more realistic core-annular problem than in [37], viz. a problem of
CAFF with nonequal viscosities, was solved in
 [31] with the MP
approach (later this solution was reformulated with an SP approach by
Papageorgiou et al. [79] whose
 numerical simulations of the
EE of [31] had confirmed the conclusions of [31].) In that work,
we had shown that the
 core disturbances can make a nonlocal contribution
expressed by an integral-operator term in the evolution equation. (It
 was
not written explicitly there--because of space limitations required by the
publisher, but it was clearly indicated in
 [31] how to obtain that
integral term ``...in terms of the (confluent hypergeometric) Kummer's
function...'' [31].)


By using certain properties of the (dispersive-dissipative) integral term,
we established several domains in the space of
 basic parameters for which no
break-up occurs, so that the flow keeps its core-annular
character--including some cases
 in which the Reynolds number of
the core was much greater than unity. (In fact, each such domain
is given by the
 corresponding conditions of global validity of the theory.)
When this core Reynolds number is much less than unity, the
 integral term of
the EE, as we pointed out in [31], ``...simplifies and is found in
terms of modified Bessel functions...''.


The idea of the formal MP approach was first introduced in that work. We
also pointed out the importance of the
 dissipative terms even when they are
much smaller than the dispersive terms
coming from the nonlocal, integral

member of the EE (similar to [55]). The possibility of a
linear-mechanism stabilization (by the viscosity stratification)
 in the case
of a more viscous film was demonstrated.


A generalization of this work to the case of rotating CAFF was undertaken in [21].
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Vertical and horizontal core-annular flows with
large-amplitude waves


A nonlinear evolution equation for 2-D waves in a vertical CAFF driven by
gravity and/or vertical pressure gradient
 were cited in [38]:


Here the units of the film thickness h, basic velocity of the interface U, time t, and axial coordinate z are the Nusselt
 film thickness  ,
the Nusselt velocity  , the time  , and the
tube radius, respectively;

 , where the last term is
the core-to-film ratio of densities; and S is a modified Weber number

 where  is the surface tension
(we have omitted for brevity the overbars in notations of the

 dimensional
quantities) and  is the ratio of film thickness to the tube radius.


One [28] can obtain this equation, valid in certain domains of
parameters, either directly from the NS problem with a
 MP approach, or
formally from the 3-D Benney-type equation [28]


[here (h,t,z) are in units of  where  is the characteristic lengthscale in the axial
direction,  ,

 and  ) which
can be derived [28] analogous to the similar equation [35]
for the vertical annular film [see

 Eq. (45) in section 3.2.1].
In the regimes Eq. (49) describes, the effect of the core
disturbances is negligible;
 additionally, inertia effects are negligible. (This equation is good for CAFFs in vertical capillaries, but cannot be
 expected to describe the ``bamboo waves'' discovered
in ``macroscopic'' experiments [7]: indeed, as is easy to estimate,

the inertia effects are important in those experiments.)


When the pressure gradient is absent, and in the limit of a vanishing core,  one finds that  and Q=1, and

 Eq. (49)
reduces to the Eq. (40) of a falling single film. In another limit, g=0, Eq. (49) reduces to the EE of the
 horizontal CAFF which
first appeared in [3],


Here the Weber-type number  is defined similar to S in Eq. (49) but with the basic interface velocity  instead of

 The
same change of basic velocities is used in definitions of the units for the
basic velocity of the interface U, time

 t, and axial coordinate z.
Note that the structure of this EE differs from that of the falling-film EE (40) by the power of
 h in the coefficient of  (the advective
term) only.
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Figure 13: Development of a pulse train and the cascade of pulse coalescences
in the horizontal core-annular flow
 governed by Eq. (51) with  (q=10.0). (From [38].)


Figure 14: Coalescences of pulses in a vertical core-annular flow governed by
Eq. (49) with U=2.5 and Q=-0.5, for
 S=2.0 (q=8.0). (From [38].)



In [38], we simulated EEs (49) and (51) on
extended spatial intervals with periodic boundary conditions, similar to the

work [59] for the falling-film equation (40). [Also, later
the same results appeared in [58] (with some elaborations and
 along
with numerical simulations of some model equations of the horizontal CAFF)].
For the horizontal-CAFF
 equation (51), we detected some errors in
earlier finite-difference short-interval simulations of [3]. In
general, as the
 control parameter increased, we observed the same windows of
qualitatively different behaviors as for the EE (40) (see
 [59]), but
with lower boundaries between the neighboring windows. In particular, the
coalescences of two pulses one of
 which is sufficiently larger than the
other (see Fig. 13) occurred for  as small as the critical value 


Cascades of such coalescences can result in formation of ``giant''
collar-like bulges of the film, which eventually may
 become ``lenses''
spanning the entire cross-section of the capillary tube. The lens formation
can be regarded as a result
 of a pinch-off of the core, such as those
observed in physical experiments [3, 4] for even very small average

thicknesses, such as  The mechanism in Ref.
[40] (proposed
there for a core-annular configuration without

 any mean flow), if
applied to the CAFF, would predict no pinch-off for  . Our
results suggest that
 coalescences can raise a local mean thickness over the
threshold value, allowing the mechanism [40] to pinch-off the
 core.
Thus, the coalescences of pulses explain the formation of lenses in
experiments [3, 4], which formerly remained
 unexplained.

Such coalescences have been observed [38] for general vertical CAFFs
as well (see Fig. 14).
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Some unresolved questions concerning 
 foundations of
the film flow research
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On foundations of perturbation methods used
 in film flow
studies.


Although the history of the
use of perturbation methods in nonlinear
studies of film flows is at least several decades
 long, in all cases we know
of they have been used in only formal and heuristic ways, quite far from being

mathematically rigorous. Every time that a formal power series is obtained
to represent a solution, one can ask whether
 that series is convergent and
what is its radius (or radii, in the case of multiple series) of
convergence. If it is divergent,
 the series can be asymptotic to
the exact solution and thus still useful for approximating it. The worst
possibility is that
 the series is not even asymptotic to the true
solution; in that case, using it to represent the true solution can be
plainly
 misleading. Even if the series is asymptotic, this asymptoticness
can be uniform or not. To the best of our knowledge,
 such
questions have never even been mentioned in the literature on film flows. We
believe it is important to discuss
 these questions even if few, if any, of
them can be answered at the present time. (For terminology we use and a good

introduction to perturbation methods, the reader can consult the book by
Murdock [74]; see also [60, 76, 26].)


It is clear that in all papers which employ the perturbative power series,
it is implicitly assumed that those are at least
 asymptotic to the true
solutions. Considering the long-wave theory, the perturbation parameter  is based on the initial
 lengthscale (rather than on basic
parameters). The global, i.e. uniform in time, validity of (i.e. a good
approximation by)
 the series in  must include their validity at
large times, at the attractor--on which the characteristic lengthscale of
the
 solutions may be quite different from their initial lengthscale. The
attractor lengthscale is determined by the basic
 parameters, and the initial
parameters are essentially irrelevant to it. Therefore it is clear that the
global-validity
 conditions (see section 2.1) cannot even be
formulated in terms of the longwave parameter.


Proceeding to theories based on basic perturbation parameters, let
us speak for simplicity of a single-parameter
 perturbation approach, where
the series are in powers of a parameter (say)  If a theory is
merely asymptotic, all one
 can assert is that the approximation is good for  less than some  and there are examples when
the threshold value 
 is extremely small (e.g. [74, 67])
so that just  is not the correct validity condition. Since the value  is unknown

 a priory, one cannot formulate the
validity conditions in terms of  Analysis of the relevant
film-flow literature,
 however, leads to the conclusion that the validity
condition  (in the sense of the order of magnitude, and
not of

 the asymptotic order) is implicitly assumed there. That implies
convergent series of the type of the geometric series
 whose sum is  and the error in approximating this sum with the first
term of the

 series, the number 1, is  ,
which is  if  It is plausible, in our view,
that
in most cases of film

 flows the perturbation theory is regular, in the sense
that it includes just such convergent series (if there is a negative

power of the parameter at the beginning of a series--as in the series for p in Eq. (21)--it is not a significant singularity: it

can be regularized by defining a new variable to be
the series divided by that negative power). Indeed, as was

mentioned in the Introduction, the (nonhomogeneous) equations for the
higher-order coefficient functions (of the series
 for the unknowns) have
coefficients made of the lower-order CFs. If the latter are  the
coefficients of the

 equations in question are  and thus the
solutions, the next-order coefficient functions, are likely to be 


Inductively, one concludes that all the coefficients in the series for the
unknowns are of order of magnitude 1, so that
 the series are of the geometric
type.


However, this argument is obviously merely plausible rather than rigorous.
As time goes to infinity, the solutions of a
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 PDE with coefficients of order
one can (i) remain bounded; (ii) decay to zero; and (iii) grow to infinity.
The argument
 under consideration ignores the unpleasant possibility (iii).
This can be excluded by integrating numerically the systems
 of different
orders for the coefficient functions. So far, this was restricted to just
the leading-order simulations in the
 film flow studies (for some
higher-order simulations in investigations of jets, see [10]). It would be interesting to
 explore the simulations for higher orders in
future studies of film flows.


The same considerations apply to the (formal) multiparametric perturbation
approach. The (global) validity conditions
 assume convergent (multiple)
series of the geometric type. Since such a convergence has not been proved,
the method
 remains heuristic, just as the longwave and the single-parameter
approaches. [However, as we argued in the
 Introduction, the advantage of the
MP approach is that it yields the validity conditions (albeit heuristic as
well), which
 are much less restrictive than those following from the SP
derivation.]


In the less-formal MP approach demonstrated in the Introduction and used in
most of our theories, the validity
 conditions follow in fact from what is
termed ``the apparent consistency of the basic simplification procedure'' in
the
 excellent book [67]. However, in Chapter 6 of that book, it is
demonstrated (albeit for algebraic examples only) that
 sometimes the
presence of the
apparent consistency does not imply that the solution of the simplified
equations is a
 good approximation to the exact solution of the original,
full problem. Therefore, in principle, a rigorous proof is
 required that our
validity conditions really guarantee the good approximation. Until such a
proof is available, the less-
formal MP remains only heuristic as well.


Even when the perturbation series are just asymptotic rather than
convergent, the MP approach can be preferable since
 a single MP theory is
equivalent to infinitely many SP ones (with different scalings of the basic
parameters as powers
 of the single perturbation parameter). However, the MP
theory uses the assumption that if a series is equal to zero, then
 each
coefficient separately must be equal to zero. The proof is well known for
the usual asymptotic series containing a
 single perturbation parameter, but
one can see that it cannot be immediately generalized to the case of
asymptotic series
 with many independent asymptotic parameters. Nevertheless,
the uniqueness of asymptotic series can
be proved at least
 for the case of two perturbation parameters [30].


Finally, the questions touched upon in this section are not specific to the
theories hinged on a single evolution equation,
 but are as well
relevant to theories based on less drastic simplifications of the NS
problem, such as the boundary-layer
 system of Refs. [17, 16]. Indeed, such theories can only be justified by a perturbation
theory using one or more small
 parameters.
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On numerical simulations of evolution equations


Most simulations in the film flow literature use periodic boundary
conditions, which make the problem easier. As was
 mentioned before, it is
desirable that the interval of periodicity be sufficiently large, containing many elementary
 structures of a characteristic lengthscale; then
one can hope that the result do not depend on the size of the interval,

except for the edge effects.


However, in any case, the problem with periodic BC is an initial value
problem, whereas in the physical experiments
 with the convectively unstable [72] films an important phenomenon is the downstream amplification of
the inlet noise.
 This can be modeled with different BC [23, 14], corresponding to the spatial (as opposite to temporal)
development of
 instability. Though we do not expect a significant difference
between the two kinds of numerical simulations, the
 spatial one and the
temporal one that we have been doing (indeed, one can think of a wave packet
which is emitted at
 the inlet; after that, in its co-moving reference frame,
it just develops from that initial condition, as it is advected
 downstream
by the film flow), still it would be interesting to make the spatial 3-D
simulations of our evolution
 equations and compare them with the
periodic-BC-simulation results. (One source of a possible difference is the
fact
 that with the periodic conditions, a structure exiting from the
downstream end of the interval exits the upstream end,
 and thus can catch up
with another, slower moving structure, which originally was upstream of the first structure, so
 that the two would never interact on an
unlimited interval; whereas they come to interact on the limited interval of

periodicity.) Such 3-D spatial-evolution simulations have never been done
before with the more complicated boundary-
layer systems, because of
computational difficulties (see [14] for their 2-D simulations).
However, for a single evolution
 equation they are quite feasible, as is
evidenced by such simulations [23] of the equation of Ref. [85].


Another question one should be aware of concerns long-time simulations of a
system evolution to a strange attractor.
 Since there is a sensitive
dependence of a trajectory on the attractor to the initial conditions, the
computed trajectory
 close to the attractor can relatively fast wander away
from the true trajectory starting from the same initial conditions.
 This can
happen no matter how good the numerical method is, just because of the
unavoidable round-off errors. (This is
 a kind of the ill-conditioning problem.) Nevertheless, we believe it can happen that at the same time the
computed
 chaotic trajectory reflects all the important (statistical?)
properties of the true trajectory, so that the computed results are
 ``good''
for all practical purposes. We have not seen this problem discussed in the
literature.


In simulations of small-amplitude EEs of flows down cylinders it was always
assumed that the waves are axisymmetric
 because there are no unstable
nonaxisymmetric modes in the linear theory. However as we mentioned above,
some first
 (i.e. with m=1) nonaxisymmetric modes can be only weakly,
neutrally, stable, so that nonlinearity can easily excite
 them. This
circumstance should be kept in mind for the future studies of the falling
annular films.
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Summary
  For different film flows, we have discussed theories hinged on
a single evolution PDE. Such theories can be obtained
 by the multiparametric
perturbation approach. Its advantage over earlier perturbation methods is
that along with an
 evolution equation--and explicit expressions for
velocities and pressures in terms of film thickness--it also yields

conditions on parameters under which the theory provides a good
approximation of the wavy film evolution.


Evolution equations are now available, with known parametric domains of
their validity (local and global), for small-
amplitude regimes of
planar--inclined or vertical--film flows. Such theories, each hinged on a
single evolution equation
 of the film thickness, have also been obtained for
waves in the general vertical core-annular film flow, and in its
 limiting
cases--the flow of a free-surface film down a cylinder and the horizontal
core-annular flow; in all these cases
 the evolution equations are available
for both the small-amplitude and large-amplitude (but still small-slope)
regimes.
 The large-amplitude regimes of planar-film flows cannot be
quantitatively approximated by a single evolution equation
 of the film
thickness. The simulations of the Benney-type equations (which equations are
now available for the
 cylindrical cases as well--for the large-radius
falling annular film and for the general vertical core-annular flow) should

be used as qualitative models only.


The small-amplitude evolution equations are relatively amenable to
fully-dimensional numerical simulations on
 extended spatiotemporal domains.
These can lead to insights useful for the studies of even large-amplitude
waves.
 Simulations of the equation for small-amplitude regimes of a strongly
dispersive falling planar film exhibit formation of
 unusual two-stream 3-D
patterns at large times, near a strange attractor.


Some large-amplitude, highly-nonlinear equations have been simulated on
extended spatiotemporal domains for two-
dimensional waves. Here, the most
significant finding appears to be the phenomenon of irreversible
coalescences of
 interacting solitary pulses.


There are several agreements of these theories with corresponding
experiments: quantitatively with the experiments on
 flows on vertical fibers [82]--whose parameters did satisfy the conditions of validity of the
theory; and qualitatively
 with the inclined-film experiments [72]
whose parameters were somewhat outside of the domain of theory validity.

Also, the collision of pulses may qualitatively explain the phenomenon of
core pinch-off in the capillary core-annular
 flow [4] (where the
pulses grow beyond the domain of the theory validity).


Many fundamental questions in the study of film flows have not yet been
answered. Nevertheless, significant progress
 is under way, and many
interesting insights and findings can be expected in the near future.

Page 48



Acknowledgments

This work has been supported in part by DOE Grant DE-FG05-90ER14100. In our research, we have used the
 computing facilities of the Alabama
Supercomputer Authority and the National Energy Research Supercomputing

Center of the Department of Energy.

Page 49



References

1

S. V. Alekseenko, V. Y. Nakoryakov, and B. G. Pokusaev.
Wave formation on a vertical falling liquid film.

AIChE J., 31:pp. 1446-1460, 1985.

2

R. W. Atherton and G. M. Homsy.
On the derivation of evolution equations for interfacial waves.
Chem. Engng
 Commun., 2:57-77, 1976.

3

R. W. Aul.
The motion of drops and long bubbles through small capillaries:
Coalescence of drops and annular
 film stability.
PhD thesis, Cornell University, 1989.

4

R. W. Aul and W. Y. Olbricht.
Stability of a thin annular film in a pressure-driven, low Reynolds
number flow
 through a capillary.
J. Fluid Mech., 215:585-599, 1990.

5

A. J. Babchin, A. L. Frenkel, B. G. Levich, and G. I. Sivashinsky.
Flow-induced nonlinear effects in thin liquid
 film stability.
Ann. NY Acad. Sci., 404:426-427, 1983.

6

A. J. Babchin, A. L. Frenkel, B. G. Levich, and G. I. Sivashinsky.
Nonlinear saturation of Rayleigh-Taylor
 instability.
Phys. Fluids, 26:3159-3161, 1983.

7

R. Bai, K. Chen, and D. D. Joseph.
Lubricated pipelining, stability of core-annular flow. Part V:
experiments and
 comparison with theory.
J. Fluid Mech., 240:97-132, 1992.

8

N. J. Balmforth.
Solitary waves and homoclinic orbits.
Annu. Rev. Fluid Mech., 27:335, 1995.

9

N. J. Balmforth, G. R. Ierely, and R. Worthing.
Pulse dynamics in an unstable medium.
Institute for Fusion
 Studies (University of Texas, Austin) Preprint IFSR#708, May 1995.

10

S. E. Bechtel, J. Z. Cao, and M. G. Forrest.
Practical application of a higher order perturbation theory for
slender
 viscoelastic jets and fibers.
J. Non-Newtonian Fluid Mech., 41:201-273, 1992.

11

D. J. Benney.
Long waves in liquid films.
J. Math. Phys., 45:150-155, 1966.

12

A M. Binnie.
Experiments on the onset of wave formation on a film flowing down a
vertical plane.
J. Fluid
 Mech., 2:551-553, 1957.

13

Page 50




J. P. Burelbach, S. G. Bankoff, and S. H. Davis.
Nonlinear stability of evaporating/condensing liquid films.
J.
 Fluid Mech., 195:463-494, 1988.

14

H. -C. Chang, E. A. Demekhin, and E. Kalaidin.
Simulation of noise-driven wave dynamics on a falling film,
 1995.
Submitted to AIChE Journal.

15

H.-C. Chang.
Wave evolution on a falling film.
Annu. Rev. Fluid Mech., 26:103-136, 1994.

16

H.-C. Chang, M. Cheng, E. A. Demekhin, and D. I. Kopelevich.
Secondary and tertiary excitation of three-
dimensional patterns on a
falling film.
J. Fluid Mech., 270:251-275, 1994.

17

H.-C. Chang, E. A. Demekhin, and D. I. Kopelevich.
Nonlinear evolution of waves on a vertically falling film.
J.
 Fluid Mech., 250:433-480, 1993.

18

K. Chen and D. D. Joseph.
Lubrication theory and long waves.
Preprint, 1990.

19

P. Collet, J.-P. Eckmann, H. Epsten, and J. Stubbe.
Global attracting set for Kuramoto-Sivashinsky equation.

Commun. Math. Phys., 152:203-214, 1993.

20

P. Constantin, C. Foias, B. Nicolaenko, and R. Temam.
Integral Manifolds and Inertial Manifolds for Dissipative

Partial Differential Equations.
Springer, New York, 1989.

21

A. V. Coward and P. Hall.
On the nonlinear interfacial instability of rotating core-annular
flow.
Theoret. Comput.
 Fluid Dynamics, 5:269-289, 1993.

22

M. C. Cross and P. C. Hohenberg.
Pattern formation outside of equilibrium.
Rev. Mod. Phys, 65:851-1112, 1993.

23

R. J. Deissler, A. Oron, and Y. C. Lee.
Evolution of two-dimensional waves in externally perturbed flow on a
 vertical cylinder.
Phys. Rev. A, 43:4558-4561, 1991.

24

E. A. Demekhin, G. Yu. Tokarev, and V. Ya. Shkadov.
Hierarchy of bifurcations of space-periodic structures in a
 nonlinear
model of active dissipative media.
Physica D, 52:338-361, 1991.

25

P. G. Drazin and W. H. Reid.
Hydrodynamic Stability.
Cambridge University Press, 1981.

26

M. Van Dyke.
Perturbation Methods in Fluid Mechanics.
Parabolic Press, Palo Alto, 1975.

27

C. Elphick, G. R. Ierley, O. Regev, and E. A. Spiegel.
Interacting localized structures with Galilean invariance.

Phys. Rev. A, 44:1110-1112, 1991.

28
Page 51




A. L. Frenkel.
On evolution equations for core-annular film flows.
To be published.

29

A. L. Frenkel.
On wavy flow of films down a vertical cylinder.
To be published.

30

A. L. Frenkel.
Uniqueness of multiparametric asymptotic series.
To be published.

31

A. L. Frenkel.
Nonlinear saturation of core-annular flow instabilities.
In Proc. Sixth Symp. on Energy
 Engineering Sciences,
CONF-8805106 (Argonne Natl. Lab., Argonne, Illinois), pages 100-107, 1988.

32

A. L. Frenkel.
On asymptotic multiparameter method: Nonlinear film rupture.
In Proc. Ninth Symp. on Energy
 Engineering Sciences,
CONF-9105116 (Argonne Natl. Lab., Argonne, Illinois), pages 185-192, 1991.

33

A. L. Frenkel.
Stability of an oscillating Kolmogorov flow.
Phys. Fluids A, 3:1718-1729, 1991.

34

A. L. Frenkel.
Nonlinear theory of strongly undulating thin films flowing down a
vertical cylinder.
Europhys.
 Lett., 18:583-588, 1992.

35

A. L. Frenkel.
On evolution equations for thin films flowing down solid surfaces.
Phys. Fluids A, 5:2342-2347,
 1993.

36

A. L. Frenkel.
Dissipative-dispersive evolution equation for falling annular films.
Bull. Am. Phys. Soc., 39:1856,
 1994.

37

A. L. Frenkel, A. J. Babchin, B. G. Levich, T. Shlang, and G. I. Sivashinsky.
Annular flow can keep unstable
 flow from breakup: nonlinear
saturation of capillary instability.
J. Colloid Interfac. Sci., 115:225-233, 1987.

38

A. L. Frenkel and V. I. Kerchman.
On large amplitude waves in core-annular flows.
In Proc. 14th IMACS
 Congress on Computations and Applied
Mathematics (ed. W. F. Ames), volume 2, pages 397-400, Atlanta, 1994.

39

A. L. Frenkel and G. Rudenko.
Instabilities of space-time-periodic ``triangular-eddy'' flow.
To be published.

40

P. A. Gauglitz and C. J. Radke.
An extended evolution equation for liquid film breakup in cylindrical
capillaries.

Chem. Engng Sci., 43:1457-1465, 1988.

41

B. Gjevik.
Occurence of finite amplitude surface waves on falling liquid films.
Phys. Fluids, 13:1918-1925,
 1970.

42

K. A. Gorshkov and L. A. Ostrovskii.
Interactions of solitons in non-integrable systems: direct
perturbation
 method and applications.
Physica D, 3:424-438, 1981.

43
Page 52




P. S. Hammond.
Nonlinear adjustment of a thin annular film of viscous fluid
surrounding a thread of another
 within a circular cylindrical pipe.
J. Fluid Mech., 137:363-384, 1983.

44

T. Herbert.
Secondary instabilities of boundary layers.
Annu. Rev. Fluid Mech., 20:487-526, 1988.

45

A. P. Hooper and R. Grimshaw.
Nonlinear instability at the interface between two viscous fluids.
Phys. Fluids,
 28:3, 1985.

46

J. M. Hyman, B. Nicolaenko, and S. Zaleski.
Order and complexity in the Kuramoto-Sivashinsky model of
 weakly
turbulent interfaces.
Physica D, 23:265-292, 1986.

47

K. Indireshkumar and A. L. Frenkel.
On wavy flow of films down an inclined plane.
To be published.

48

K. Indireshkumar and A. L. Frenkel.
Spatiotemporal patterns in a 3-D film flow.
Submitted to ``Advances in
 Multi-Fluid Flows''(ed. Y. Y. Renardy),
SIAM, 1996 (Proceedings of Joint AMS-IMS-SIAM Summer Research
 Conference,
Seattle, July 1995).

49

S. W. Joo and S. H. Davis.
Instabilities of three-dimensional viscous falling films.
J. Fluid Mech., 242:529-547,
 1992.

50

S. W. Joo, S. H. Davis, and S. G. Bankoff.
On falling film instabilities and wave breaking.
Phys. Fluids, 3:231-
232, 1991.

51

D. D. Joseph and Y. Renardy.
Fundamentals of Two-Fluid Dynamics, volume II: Lubricated
Transport, Drops,
 and Miscible Liquids.
Springer, New York, 1993.

52

D. D. Joseph and Y. Renardy.
Fundamentals of Two-Fluid Dynamics, volume I: Mathematical
Theory and
 Applications.
Springer, New York, 1993.

53

S. Kalliadasis and H.-C. Chang.
Drop formation during coating of vertical fibres.
J. Fluid Mech., 261:135-168,
 1994.

54

P. L. Kapitza and S. P. Kapitza.
Wave flow of thin layers of a liquid fluid:III. Experimental study of
undulatory
 flow conditions. Zh. Exp. Teor. Fiz. 19:105, 1949. Also in
Collected Papers of P. L. Kapitza (ed. D. Ter Haar),
 vol. 2 pp.
690-709. Pergamon, 1965.

55

T. Kawahara.
Formation of saturated solitons in a nonlinear dispersive system with
instability and dissipation.

Phys. Rev. Lett., 51(5):381-383, 1983.

56

T. Kawahara and S. Toh.
Pulse interactions in an unstable dissipative-dispersive nonlinear
system.
Phys. Fluids,
 31:2103-2111, 1988.

Page 53



57

R. E. Kelly.
On the stability of an inviscid shear layer which is periodic in
space and time.
J. Fluid Mech.,
 27:657-689, 1967.

58

V. I. Kerchman.
Strongly nonlinear interfacial dynamics in core-annular flows.
J. Fluid Mech., 290:131-166,
 1995.

59

V. I. Kerchman and A. L. Frenkel.
Interactions of coherent structures in a film flow: Simulations of a
highly
 nonlinear evolution equation.
Theoret. Comput. Fluid Dynamics, 6:235-254, 1994.

60

J. Kevorkian and J. D. Cole.
Perturbation Methods in Applied Mathematics.
Springer-Verlag, New York, 1981.

61

I. L. Kliakhandler and G. I. Sivashinsky.
Viscous damping of short-wavelength disturbances in down flowing
 liquid films.
Submitted to Phys. Fluids.

62

W. B. Krantz and S. L. Goren.
Finite-amplitude, long waves on liquid films flowing down a plane.
Ind. Engng
 Chem. Fundam., 9:107-113, 1970.

63

M. V. G. Krishna and S. P. Lin.
Nonlinear stability of a viscous film with respect to
three-dimensional side-band
 disturbances.
Phys. Fluids, 20:1039-1044, 1977.

64

Y. Kuramoto and T. Tsuzuki.
Persistent propagation of concentration waves in disspative media far
from thermal
 equilibrium.
Progr. Theor. Phys., 55:356-369, 1976.

65

E. A. Kuznetsov, A. M. Rubenchik, and V. E. Zakharov.
Soliton stability in plasmas and hydrodynamics.
Phys.
 Rep., 142:103-165, 1986.

66

E. M. Lifshitz and L. P. Pitaevsky.
Statistical Physics, Part 2: Theory of Condensed Matter (in
Russian; vol. 9 of
 Landau and Lifshitz's Theoretical Physics). Nauka, Moscow,
1978.

67

C. C. Lin and L. A. Segel.
Mathematics Applied to Deterministic Problems in the Natural
Sciences.
SIAM,
 Philadelphia, 1988.

68

S. P. Lin and W. C. Liu.
Instability of film coating of wires and tubes.
AIChE J., 21:775-782, 1975.

69

S. P. Lin and C. Y. Wang.
Modeling wavy film flows. In Encyclopedia of Fluid Mechanics
(ed. N. P.
 Cheremisinoff), vol. 1, pp. 931-951. Gulf, Houston, 1985.

70

J. Liu and J. P. Gollub.
Solitary wave dynamics of film flows.
Phys. Fluids, 6:1702-1712, 1994.

71

J. Liu, J. D. Paul, and J. P. Gollub.
Measurments of the primary instabilities of film flows.
J. Fluid Mech.,

Page 54



 220:69-101, 1993.

72

J. Liu, J. B. Schneider, and J. P. Golub.
Three dimensional instabilities of flowing films.
Phys. Fluids., 7:55-67,
 1995.

73

M. Lukin and A. L. Frenkel.
On an evolution equation for a film flowing down a vertical cylinder.
To be
 published.

74

J. A. Murdock.
Perturbations: Theory and Methods.
John Wiley, New York, 1991.

75

C. Nakaya.
Long waves on a thin fluid layer flowing down an inclined plane.
Phys. Fluids, 18:1407-1420, 1975.

76

A. H. Nayfeh.
Perturbation Methods.
Wiley-Interscience, New York, 1973.

77

A. A. Nepomnyashchy.
Three-dimensional spatially-periodic motions in liquid films flowing
down a vertical
 plane.
Hydrodynamics (Russian) Perm, 7:43-52, 1974.

78

A. Oron and P. Rosenau.
On a nonlinear thermocapillary effect in thin liquid layers.
J. Fluid Mech., 273:361-374,
 1994.

79

D. T. Papageorgiou, C. Maldarelli, and D. S. Rumschitzki.
Nonlinear interfacial stability of core-annular film
 flows.
Phys. Fluids A, 2:340, 1990.

80

D. T. Papageorgiou and Y. S. Smyrlis.
The route to chaos for the Kuramoto-Sivashinsky equation.
Theoret.
 Comput. Fluid Dynamics, 3:15-42, 1991.

81

A. Pumir, P. Manneville, and Y. Pomeau.
On solitary waves running down an inclined plane.
J. Fluid Mech.,
 135:27-50, 1983.

82

D. Quéré.
Thin films flowing on vertical fibers.
Europhys. Lett., 13:721-725, 1990.

83

P. Rosenau, A. Oron, and J. M Hyman.
Bounded and unbounded patterns of the Benney equation.
Phys. Fluids A,
 4:1102-1104, 1992.

84

G. J. Roskes.
Three dimensional long waves on a liquid film.
Phys. Fluids, 13:1440-1445, 1970.

85

T. Shlang and G. I. Sivashinsky.
Irregular flow of a liquid film down a vertical column.
J. Physique, 43:459-466,
 1982.

86

T. Shlang, G. I. Sivashinsky, A. J. Babchin, and A. L. Frenkel.
Irregular wavy flow due to viscous stratification.

Page 55




J. Physique, 46:863-866, 1985.

87

G. I. Sivashinsky.
Nonlinear analysis of hydrodynamic instability in laminar flames.
Acta Astronaut., 4:1175-
1206, 1977.

88

G. I. Sivashinsky and A. L. Frenkel.
On negative eddy viscosity under conditions of isotropy.
Phys. Fluids A,
 4:1608-1610, 1992.

89

G. I. Sivashinsky and D. M. Michelson.
On irregular wavy flow of a liquid film down a vertical plane.
Prog.
 Theor. Phys., 63:2112, 1980.

90

M. K. Smith.
The axisymmetric long-wave instability of concentric two-phase pipe
flow.
Phys. Fluids A, 1:494-
506, 1989.

91

B. S. Tilley, S. H. Davis, and S. G. Bankoff.
Nonlinear long-wave stability of superposed fluids in an inclined
 channel.
J. Fluid Mech., 277:55-83, 1994.

92

S. Toh, H. Iwasaki, and T. Kawahara.
Two-dimensionally localized pulses of a nonlinear equation with
 dissipation and dispersion.
Phys. Rev. A, 40:5472-5475, 1989.

93

J. Topper and T. Kawahara.
Approximate equations for long nonlinear waves on a viscous film.
J. Phys. Soc.
 Japan, 44(2):663-666, 1978.

94

Yu. Ya. Trifonov and O. Yu. Tsvelodub.
Nonlinear waves on the surface of a falling liquid film. Part I.
J. Fluid
 Mech., 229:531-554, 1991.

95

O. Yu. Tsvelodub and L. N. Kotychenko.
Spatial wave regimes on a surface of thin viscous liquid film.
Physica
 D, 63:361-377, 1993.

96

G. B. Whitham.
Linear and Nonlinear Waves.
John Wiley and Sons, New York, 1974.

97

N. J. Zabusky and M. D. Kruskal.
Interaction of solitons in a collisionless plasma and the recurrence
of initial
 states.
Phys. Rev. Lett., 15:240-243, 1965.

98

V. E. Zakharov and E. A. Kuznetsov.
Three-dimensional solitons.
Sov. Phys. JETP, 39:285-286, 1974.

99

X. Zhang.
On linear and nonlinear stability theory of periodic flows of
incompressible fluids.
PhD thesis,
 University of Alabama, 1995.

Page 56



Page 57



 About this document ...


This document was generated using the LaTeX2HTML translator Version 96.1 (Feb 5, 1996) Copyright © 1993, 1994,
 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.

 The command line arguments were: 
latex2html riah2.tex.

The translation was initiated by Alex Frenkel on Fri Nov 8 23:40:39 CST 1996

Page 58

http://www-dsed.llnl.gov/files/programs/unix/latex2html/manual/
http://www-dsed.llnl.gov/files/programs/unix/latex2html/manual/
http://www-dsed.llnl.gov/files/programs/unix/latex2html/manual/
http://cbl.leeds.ac.uk/nikos/personal.html

	BigPaper
	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/riah2.html
	ua.edu
	Professor Alexander Frenkel - Self-Review Paper on Evolution Equations of Wavy Film Flows


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node2.html
	ua.edu
	Perturbation approaches


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node3.html
	ua.edu
	An example of the less-formal MP approach at work: 2-D vertical film flow



	Binder1
	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node4.html
	ua.edu
	The leading two orders of the fully formal MP approach: the strongly dispersive case


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node5.html
	ua.edu
	Power series


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node6.html
	ua.edu
	Leading-order system


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node7.html
	ua.edu
	The #tex2html_wrap_inline3057#-correction to the leading order


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node8.html
	ua.edu
	Earlier perturbation approaches and the problem of validity conditions


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node9.html
	ua.edu
	Long-wave approach


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node10.html
	ua.edu
	Single-parameter approach


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node11.html
	ua.edu
	Some results


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node12.html
	ua.edu
	Three-dimensional inclined-film flow


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node13.html
	ua.edu
	General evolution equation; impossibility of a single-equation description of large-amplitude regimes for large times


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node14.html
	ua.edu
	Evolution equation for small-amplitude regimes


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node15.html
	ua.edu
	Numerical studies of evolution equation


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node16.html
	ua.edu
	Unusual patterns on strange attractors for strongly dispersive falling films


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node17.html
	ua.edu
	Transient patterns: Qualitative agreement of simulations with experiments


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node18.html
	ua.edu
	Flow down a vertical fiber


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node19.html
	ua.edu
	Large-amplitude regimes


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node20.html
	ua.edu
	Small-amplitude evolution equation


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node21.html
	ua.edu
	Small-amplitude waves in core-annular flows


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node22.html
	ua.edu
	Vertical and horizontal core-annular flows with large-amplitude waves


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node23.html
	ua.edu
	Some unresolved questions concerning foundations of the film flow research


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node24.html
	ua.edu
	On foundations of perturbation methods used in film flow studies.


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node25.html
	ua.edu
	On numerical simulations of evolution equations


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node26.html
	ua.edu
	Summary


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node27.html
	ua.edu
	Acknowledgments


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node28.html
	ua.edu
	References


	http://bama.ua.edu/~afrenkel/RIAHPAP/riah2/node29.html
	ua.edu
	About this document ...



	ua.edu
	Some results




