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We derive a generic, “template” evolution equation for the thickness of
a film in a single- or two-fluid system under the parametric conditions when
the film inertia and the adjoining-liquid (if any) disturbances are negligible
in the dynamical problem for the film disturbances. For the plane Couette-
type flow between two horizontal plates (with the lighter film layer at the
bottom) generated by an in-plane circular spinless motion of the upper
plate, a small-amplitude evolution equation follows. Its numerical simu-
lations confirm that the growth of any – in general, three-dimensional –
disturbance is arrested via nonlinear effects, with the disturbance of thick-
ness remaining small. A physical example of a system whose parameters
satisfy the conditions of consistency for the derivation of the approximate
evolution equation, is given. The possibility of a non-dripping wet ceiling
is discussed and experiments with moving ceilings are suggested.

1. Introduction

As is well known, the gravitational Rayleigh-Taylor (RT) instability of fluid
layers occurs in various industrial and natural processes. Examples include
coating flows with paint or photographic material, the boiling of liquids, in-
ertial confinement fusion experiments in which pellets of deuterium-tritium
fuel undergo laser implosion, and certain geophysical processes. Rupture is
often undesirable, as in the breakup of the shell containing the fuel before
the fuel is fully compressed in inertial confinement fusion (e.g., [1]).

The linear theory of the RT instability is documented in [2], and later
developments, including the work on two-layer plane Couette (PC) flows of
fluids with different densities, are discussed in [3]. In the 1980s and the early
1990s, advances were made in understanding the nonlinear development of
the longwave RT instability in a viscous film. The possibility of small-

amplitude saturation of the RT instability, such that the amplitude of the
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interfacial waves remains small as compared to the average film thickness,
was indicated in [4]. By using a weakly nonlinear theory, a one-dimensional
(1D) evolution equation (EE) of the Kuramoto-Sivashinsky (KS) type was
obtained for the undulation of the interface in the case of a steady linear

profile of the base velocity between two horizontal plates, the classical two-
fluid PC flow. Experiments of the 3D instability of a RT system with no
basic velocity field, a “film on a ceiling” [5], have demonstrated that at
large times, drop coalescence is possible leading to dripping for even very
thin films.

As for the saturation result of [4], it was obtained for 2D (streamwise)
disturbances only, i.e. for an infinitely small fraction of all possible, in gen-
eral 3D, disturbances. The nonlinear mechanism of the saturation [6] de-
pends crucially on the nonlinear term of the KS equation, which vanishes
for any spanwise disturbance; as a result, for the classical PC flow, the
saturation fails, in general. This consideration leads to the idea that one
needs a base flow with time-dependent velocities, rotating through all hor-

izontal directions, in order for any direction to be, for some time, almost
like the streamwise direction in the classical PC flow. Then, the saturation
mechanism can work, even if only part-time, in every horizontal direction,
thus arresting the growth of an arbitrary 3D disturbance; that is, a genuine

small-amplitude saturation of the RT instability is achieved. The investi-
gation of this idea is the main subject of the present communication. We
also discuss the suggestion that a similar horizontal motion of a wet ceiling

can keep it from dripping.

2. Generalized two-fluid plane Couette flow

Consider a two-fluid system between two horizontal plates which are a
distance h + hL apart, with the upper plate moving in its plane with
an assigned horizontal, but otherwise arbitrary, time-dependent velocity
Vu(t) = Uu(t)i +Wu(t)k (where i and k are the unit vectors in the hori-
zontal directions x and z, respectively) and the bottom plate being fixed.
A fluid layer of constant viscosity µF and density ρF is bounded below by
the fixed plate at y = −h, and above (at y = 0) by another liquid layer (of
thickness hL) which has a density ρL and viscosity µL. It is natural to look
for the flow whose velocity field is also horizontal everywhere but depends
only on the vertical coordinate y (and time), with the pressure depending
only on y. We denote VF (y,t) and VL(y,t) the velocity fields in the lower
and upper fluids, respectively. Let their components be [Uj ,Wj ]:=Vj · [i,k]
where j = F for the film and j = L for the upper liquid (the symbols := or
=: indicate the definition of the quantity appearing next to the colon). The
Navier-Stokes (NS) equations take the simple form of the familiar “diffu-
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sion” equation:

ρj(U j)t = µj(U j)yy, ρj(W j)t = µj(W j)yy (1)

The boundary conditions (BCs) are as follows: (i) the no-slip at the plates,
[UF ,WF ](y = −h) = 0 and [UL,WL](y = hL) = [Uu,Wu](t), and (ii) the con-
ditions of continuity of velocities and shear stresses at the film interface,
[UF ,WF ](0, t)=[UL,WL](0, t) and µF [UF ,WF ]y(0, t)=µL[UL,WL)](0, t), re-
spectively.

The unique solution of this problem with arbitrary initial conditions is
known to exist for any (reasonably smooth) initial conditions (and can be
always obtained in series form). It seems natural to call these flows “the
generalized two-fluid PC flows”, the classical PC flow being a particular
case, the one of time-independent velocities.

3. Film disturbances and “template” evolution equation

We focus on the film case of the generic PC flows with h≪ hL. We denote
u, v, w, p the disturbances of the x-, y-, z-components of velocity and
of pressure, respectively, in the film. Let us write down the dynamic equa-
tions for the disturbances in a generic form, without specifying the base
velocity profile. Using the combination of the (long-wave) lubrication and
Stokes approximations, the simplified (x, z)- momentum, y-momentum, and
continuity equations are, respectively,

[u,w]yy = [px, pz]/µ, py = 0, vy = −ux − wz (2)

(we use the notation µ interchangeably with µF ). At the fixed lower plate,
the no-slip BCs are [u,w](y = −h) = 0 and v(y = −h) = 0. At the film-
liquid interface, y =: η(x, t), the balances of normal and tangential stresses
are approximated—assuming, in particular, that the disturbances in the top

liquid are negligible—in the following simplified form:

p(y = η) = −σ∇2η − δη =: Π(x, z, t) (3)

[u,w]y(y = η) = [mUL − UF ,mWL −WF ]y(y = η) =: [s, q] (4)

Here σ is the interfacial tension; ∇ := (i∂x+k∂z); δ := g(ρL-ρF ) where g is
the gravity acceleration; and m := µL/µF , the viscosity ratio.

The solution of this problem for the film disturbances is as follows:

p(x, y, z, t) = Π(x, z, t); v= −
Y 3

6µ
∇2Π +

Y 2

2
∇ · (si+qk+

1

µ
H∇Π) (5)

[u,w] = [s, q]Y + [Πx,Πz][Y
2/(2µ) −H] (6)
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where Y :=y+h and H:=h+η. Substituting these expressions into the equa-

tion of mass conservation, Ht + (
∫ H
0 [UF + u]dY )x + (

∫ H
0 [WF +w]dY )z = 0

(or, alternatively, into the well-known kinematic BC), we arrive at

Ht +DHx + EHz −∇ ·
(
H3∇Π

)
/(3µF ) = 0 (7)

Here the second and third (“advective”) terms depend only on the base
velocities, since [D,E] :=

{
[UF ,WF ] + [S,Q]H + [S,Q]yH

2/2
}

y=η
where

[S,Q](y, t) := [mUL - UF , mWL - WF ]y; on the contrary, the last term is

completely independent of the base velocities [see Eq. (3)]. In the 2D case
when ∂/∂z = 0 and W = 0, we have E = 0, which leads to a 1D equation,
Ht +DHx− [H3Πx]x/(3µF ) = 0. [After the solution H(x, t) or H(x, z, t) of
an EE is substituted back into Eqs. (5-6) for the velocities and the pressure,
one arrives at the complete solution of the disturbance problem.]

The (large-amplitude) EE (7) has been obtained here without specify-
ing either the base velocities Uj(y, t), Wj(y, t), or the interfacial pressure
disturbance Π. So it is a “template” equation: it can be used to obtain
specific EEs for different film systems, with the appropriate changes in the
last term of Π [see Eq. (3)] accounting for different destabilizing factors.
For example, for (in general, a core-annular flow of ) a film in a capillary
(when the gravity effects are negligible), the destabilization comes from the
transverse (azimuthal) component of the interfacial curvature, and corre-
spondingly the term [−δη] in Π is replaced by [−(σ/a2)η], where a is the
radius of the capillary (for a concrete example, see the last paragraph of
Section 6).

With m=0, the template EE is good for single-film systems. For two-
fluid systems with no base flow, the template EE is applicable withD=E=0.
Thus, the template EE (7) appears to be remarkably versatile. (However, it
does not cover the flows where inertia is essential, such as large-amplitude
regimes of wavy, inertia-destabilized, falling films.) Moreover, it admits fur-
ther generalizations taking into account the viscous (elongational-stress)
and inertial NS terms [similar to [7, 8]]; these results, because of space
constraints, will be published elsewhere.

By using the template evolution equations, new concrete EEs are easily
obtained. Also, a template EE shows connections between various known
specific EEs, and avoids unnecessary repetitions in their derivation.

4. Why the earlier saturation results are inadequate

For the classical PC flow with equal viscosities, in the reference frame of
the interface, we have a linear time-independent UF (y) = yU0/h [so that
UF (−h) = −U0], S=0, and henceD=U0η/h (while E=0 sinceW=0). Then,
assuming η ≪ h, Eq. (7) [with Π of (3)] yields a (2D) EE which is written
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[when appropriately rescaled, with units similar to (9) below] in the canon-
ical form ηt+ηηx+(ηxx+ηzz)+(ηxxxx+2ηxxzz+ηzzzz)=0. The KS equation
derived in [4] is a particular 1D case of this EE with ∂z=0. Therefore, their
conclusion that the (1D) thickness disturbance η remains small forever, i.e.
the nonlinear saturation of the instability takes place, is justified only for
the (2D) streamwise disturbances of the flow. Allowing for the general, 3D
disturbances, for the case when the disturbance is x-independent (ηx = 0),
it is easy to see that the above 2D equation reduces to a linear EE which
has growing normal-mode solutions, e.g. η ∝ ek

2teikz for k ≪ 1 (so that
ηzzzz is negligible). Thus, there is no small-amplitude saturation for the
disturbances with η(t = 0) = f(z), for any f(z). (In fact, the same holds
for a generic 2D disturbance.)

The physical reason for this breakdown of saturation is as follows: For
such spanwise disturbances, the nonlinear, streamwise term of the KS equa-
tion, which plays a crucial role in the mechanism of saturation [6], is always
zero. This consideration leads to the idea that one needs a (time-dependent)
base flow whose velocities rotate through all horizontal directions—so that
any direction, for some time, is almost like the streamwise direction in the
classical (time-independent) PC flow. Then the saturation mechanism can
work, even if only part-time, for every direction. Such a multidirectional
(generalized PC) flow can be obtained as a superposition of two “unilin-
ear”, each sinusoidally oscillating, flows in two perpendicular horizontal
directions. It turns out that for such a unilinear oscillatory flow, the base
velocity profile is found in a closed form (given immediately below).

5. Small-amplitude EEs for certain general PC flows

As can be verified by direct substitution, a solution of the first of Eqs. (1)
with, for simplicity, µF =µL, is

Uj(y, t) =
U0

h
ℜ[eiΩti{

sin kjy

kj
+

tan kFh cos kjy

kF
}] (j=F, L) (8)

where kj:=(ρjΩ/µ)1/2ei3π/4. These profiles satisfy the required BCs; in

particular, ∂UL

∂y (0, t)=∂UF

∂y (0, t), the common value being U0

h cos Ωt—which
shows the meaning of the amplitude constant U0. Its value is determined
by the no-slip condition at the top plate (oscillating with frequency Ω).
This amplitude constant U0 (rather than the maximum speed of the oscil-
lating upper plate, which is a monotonic function of U0) is convenient to
use, together with the frequency Ω, to parametrize this (two-parameter)
family of solutions. Each solution has the type of a “Stokes layer” [see, e.g.,
[9]]: the instantaneous profile of the (unilinear) velocity field is oscillatory
in y with the amplitude exponentially decaying downward. The character-
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istic lengthscales of both the spatial oscillations and the decay are of the
magnitude-order of (for short, ∼) |kj |

−1 Therefore, if |hkj | ≪ 1 (which is
the case if Ω is sufficiently small), the instantaneous base velocity profile
in the film is practically linear in y.

We can easily conceive of a multidirectional flow as a superposition of
such unilinear solutions: since the problems for Uj and Wj are completely
decoupled, we have a solution of the same form as (8) for the other velocity
component, Wj. The latter, in general, may have a different amplitude
constant, W0 not equal to U0, and a different phase, Ωt → Ωt + φ—as
determined by the motion of the upper plate which generates the PC flow;
in particular, for the circular, but spinless, motion of the plate, (i) the
amplitude constants are equal and (ii) |φ| = π/2.

We obtain a small-amplitude (2D) EE by substituting into the tem-
plate EE (7) the base velocity of the multidirectional (spinless) circular
PC flow with Uj(y, t)=

U0

h ℜ[eiΩtiψj(y)] and Wj(y, t)=
U0

h ℜ[ei(Ωt−π/2)iψj(y)]
[where ψj(y) are the factors appearing inside the braces in Eqs. (8)] and
assuming that (i) the characteristic lengthscale of the basic flow is large,
(ii) |kF |h ≪ 1 (we also assume ρF ∼ ρL) and (iii) the disturbance re-
mains small-amplitude, η ≪ h. We (i) make the coordinate transformation

[x̃, z̃] = [x, z] −
∫ t

[Uj ,Wj ](0, τ)dτ (corresponding to the reference frame of
the basic interface); (ii) use the leading terms of the Taylor series about
η = 0 in (7); and (iii) rescale the EE to a canonical form by letting x̄ = x/Λ,
η = Aη̄, t̄ = t/T and Ω̄ = ΩT , (where the tilde has been dropped) with

Λ := (σ/δ)1/2 , T := 3µσ/(h3δ2), A = h4δ3/2/(3µU0σ
1/2) (9)

As a result, we obtain the following (dimensionless) EE for η:

ηt + η(ηx cos Ωt+ ηz sin Ωt) + ∇2η + ∇4η = 0 (10)

(where the bar over the variables has been dropped). We note that essen-
tially the same EE is obtained when the upper plate is fixed and the lower
one moves. [This is in contrast to the case [10] of a different (Yih) insta-
bility]. Also, we get the same EE when both plates oscillate, unilinearly in
perpendicular directions; etc..

For the 1D case when ∂z = 0 in (10), we return to the (1D) EE first
obtained in [11] [see also [12, 13]]. The 1D equation is clearly of the KS type
but the nonlinear term has an oscillatory factor cos Ωt. We note that Λ, T
and A above are the time-asymptotic characteristic amplitude, lengthscale
and timescale, respectively, which render all the terms of that “oscillatory
KS” (OKS) equation to be pairwise balanced when the nonlinear coefficient
is near its maximum value, cos Ωt ≈ 1.

We have simulated the EE (10) with periodic BCs on large domains—of
size 2πq where q ≫ 1—using a pseudospectral Fourier method [7]. For such
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large domains, we can expect that solutions [whose characteristic length-
scale is ∼ 1] do not significantly depend on the specific type of BCs (except,
possibly, for small regions near the boundaries). Also, the further increase
of the domain has no significant influence on the character of the solutions.
The initial disturbances we employ are, typically, random (e.g., white-noise)
and small-amplitude.

For the canonical KS equation, ηt +ηηx +ηxx +ηxxxx = 0, it was argued
[4] that the (infinitely-dimensional) dynamical system essentially forgets
any initial conditions and approaches an attractor. In the time-asymptotic
regime, there is a pairwise balance of terms in the equation. This leads to
the characteristic lengthscale of the wave pattern, its time scale, and the
wave amplitude being all ∼ 1. Numerical simulations of the KS equation
on large intervals agreed with this conclusion. They also revealed chaotic
wave patterns suggesting a strange attractor in the phase space.

If the frequency Ω in the 1D OKS equation is ≪ 1, that is much less
than the growth rate of the most unstable mode (which is easily seen
from the associated linearized EE to be ∼ 1 ), the change of the oscil-
latory coefficient in the OKS equation is slow, so the EE can be consid-
ered as a “nearly constant-coefficient”—containing a variable parameter
whose change is (“adiabatically”) slow. Then the pairwise balance of terms
predicts an amplitude that adiabatically grows following the decrease of
the oscillatory coefficient, and similarly falls when the coefficient increases.
These considerations (Halpern & Frenkel, 1999) lead to the conclusion that
the peak amplitude is ≈ 1/Ω (for small frequencies)—which is confirmed
by our numerical simulations. It is natural to expect the same magnitude
of the amplitude, ηmax ∼ 1/Ω, for the 2D equation (10), and the numeri-
cal experiment confirms this expectation as well: Figure 1 shows that the
(instantaneous) maximum (over the computational domain) of the thick-
ness disturbance, after an initial growth, saturates and fluctuates at the
predicted magnitude. This means the small-amplitude saturation of the
RT instability—if the amplitude is small as compared to the average film
thickness, A/Ω ≪ h. [This (small-amplitude) saturation is a genuine one:
it holds for an arbitrary initial disturbance.]

In view of the “streamwise rivulet” character of the RT instability, one
expects for the circular (spinless) PC flow to have waves with their crests
and troughs parallel to the instantaneous direction of the base velocity,
and so continuously rotating. This expectation is borne out by numerical
simulations: Figure 2 shows the rotating pattern of waves, over a quarter
of a cycle. Also, the wavelength is ∼ 1 and the amplitude is ∼ 1/Ω, as was
expected.

Our results (not shown here) of simulations for elliptical-shear flows (i.e.,
those with non-equal amplitudes U0 and W0) and circular-shear flows on
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Figure 1. Maximum disturbance (ηmax) of the thickness of a film versus time (t): history
of growth and saturation. (Ω = 0.025)
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Figure 2. Series of snapshots of film surface (contour plots of constant thickness, with
the snapshot time increasing from left to right and from top to bottom of the panel)
showing a rotating pattern of waves for a quarter of a cycle.

rectangular non-square domains testify to the robustness of the saturation
phenomenon.

The above results depend on the EE which was derived by discard-
ing many terms in the NS problem and making certain other assumptions,
such as the smallness of the solution amplitude. For consistency, it is re-
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quired that the neglected terms be much smaller than those retained in
the equations for disturbances. Since we have explicit expressions for the
velocities and pressure in terms of η and its derivatives [see Eqs. (5-6)], all
the members can now be estimated in terms of the basic parameters, with
η ∼ A/Ω, ∂x ∼ 1/Λ, ∂t ∼ 1/T [where A, Λ, and T are defined by (9)],
∂/∂y ∼ 1/h, ∂2/∂y2 ∼ 1/h2, etc. (also, since ρL ∼ ρF , we use the nota-
tion ρ for their common order of magnitude). Neglecting the x-derivative
of the velocities in the viscous terms as compared to the y-derivative im-

plies Λ ≫ h, i.e. the parametric constraint h ≪ (σ/δ)
1

2 . In order for the
adiabatic approximation to be good, one must require Ω ≪ 1, or, since

Ω = Ω∗T , where Ω∗ is the dimensional frequency, Ω∗ ≪ h3δ2

µσ . Other such
requirements, which give additional parametric constraints, are as follows:
(i) η is small as compared to h; (ii) the basic-flow lengthscale is small,
|kh| ≪ 1; (iii) the inertial terms in the NS equations are negligible; and
(iv) the viscous terms in the y-momentum equation [see Eq. (2)] are negli-
gible. All the results can be summarized as the following constraints on U0

and Ω∗ (in terms of the other, “static” parameters):

U0 ≪
σ1/2µ

h2δ1/2ρ
, Ω∗ ≪ min

(
h3δ2

µσ
,
µ

ρh2

)
,
h6δ7/2

µ2σ3/2
≪ Ω∗U0 ≪

σ1/2g

δ1/2h

[The other two independent constraints mentioned above, h ≪ hL and

h ≪ (σ/δ)
1

2 , do not involve either U0 or Ω∗]. (One can note that, as a
consequence of the parametric constraints, Ω∗ is bounded away from zero
by a quantity independent of U0.)

As a physical example, the system with the following values of parame-
ters (in CGS units) satisfies all the constraints: ρF = 1.0, ρL = 1.1, µ = 1,
σ = 100, hL = 1, h = 0.1, U0 ∼ 3, (so that δ ∼ 100, Λ ∼ 1, T ∼ 10), and
Ω ∼ 0.1.

The difference of viscosities (neglected above) can play a role via the
interfacial contributions of the upper-liquid disturbances—which can be
included and analyzed as in [14]. The result is that they are negligible if
|µL − µF |U0/[(ρL − ρF )h2] ≪ 1—in other words, when the RT instability
dominates the Yih instability.

6. Ultimate RT instability: film on a ceiling

It is interesting to consider a film spread on a (horizontal) ceiling, the lat-
ter being allowed to execute in-plane translational (self-parallel) motions.
There is an equilibrium flat-film state (in which the weight of the film is
supported by the pressure of the ambient passive atmosphere), but it is
unstable; this can be considered as, in some sense, the ultimate case of the
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Rayleigh-Taylor instability. For the motionless ceiling, experiments of Fer-
migier et al. [5] showed that the RT instability leads to dripping. In view
of our saturation results, it is natural to pose the following question: Can
such a dripping be avoided by putting the ceiling in the circular trans-
lational (spinless) motion? As was noted above, the template EE holds
for such single-fluid cases, m = 0. The base velocity (in the laboratory
frame) for the unilinear oscillatory flow is U = U0ℜ(eiΩt cosh ky). This
gives D = U0ℜ[eiΩt{cosh kη − k(sinh kη)H − k2(cosh kη)H2/2}]. Assum-
ing |kη| ≪ 1 and expanding the hyperbolic functions, yields the follow-
ing small-amplitude evolution equation (in an oscillating reference frame):
ηt + 2(ΩhU0/ν)ηηx sin Ωt + h3(ρgηxx + σηxxxx)/(3µ) = 0. It is clear that
for the case of the circular-shear flow generated by the superposition of
the perpendicular oscillatory motions with the appropriate phase shift, the
small-amplitude 2D evolution equation is

ηt + 2ΩhU0η(ηx sin Ωt+ ηz cos Ωt)/ν + h3(ρg∇2η + σ∇4η)/(3µ) = 0

However, because of the new factor (proportional to Ω) in the coefficient
of the nonlinear term, the consistency conditions are modified. In particu-
lar, the requirement that the frequency be much smaller than the growth
rate implies Ω ≪ h3ρ2g2/(µσ); the requirement that inertia be negligible
becomes U0 ≪ σ1/2µ/(h2ρ3/2g1/2); and the requirement that the amplitude
be small reads ρ5/2g7/2h4/(µσ3/2) ≪ U0Ω

2. Unfortunately, it is easy to see
that the first two constraints imply an inequality that is exactly opposite to
the third constraint. Thus, there is no system which would satisfy the full
set of constraints in this case. (This is a stark example of the importance
of checking the consistency of the derivation, for every EE.) Therefore, the
small-amplitude saturation for the film on the ceiling seems unlikely.

This, however does not preclude the possibility that the wet ceiling still
can be saved from dripping by the plate motion described above, albeit
with the wave amplitudes being “large”. The corresponding EE, readily
obtained from the template EE with the same base velocity as above (and
with |kh| ≪ 1), is

Ht + ΩU0H
2(Hx sin Ωt+Hz cos Ωt)/ν+∇ · [H3∇(ρgH +σ∇2H)]/(3µ) = 0

The dripping for a sufficiently thin film on the steady ceiling occurs only
because of the coalescence of drops [5]. If there is no coalescence of waves
for the “film-on-ceiling EE”, the dripping can be avoided. It remains to be
seen if this is the case; fortunately, the required simulations are similar to
[15] [see also [16] and references therein]. Of course, it would be even more
interesting to study this question experimentally, e.g. by putting into the
(in-plane, circular, spinless) motion the “ceiling” which was kept steady in
previous experiments [5].
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As a related example of the versatility of the template EE (discussed
in Section 3), it is immediately clear that certain EEs can be written at
once for a film on (the outer or the inner side of) a cylinder which executes
axial oscillations (with gravity being negligible): As was mentioned above,
one simply makes the substitution ρg → σ/a2 (where a is the radius of the
cylinder) in the EEs of a film on a ceiling (also taking into account that
the basic velocity is unilinear). This results in the (2D) evolution equation
Ht+(ΩU0/ν)H

2Hx sin Ωt+σ∇· [H3∇(H/a2 +∇2H)/(3µ)] = 0 [where ∇ =
(∂x, a

−1∂θ), θ being the azimuthal angle of the cylindrical coordinates] for
the large-amplitude regimes [and the OKS-type EE ηt+2(ΩhU0/ν)ηηx sin Ωt
+h3σ(a−2∇2η + ∇4η)/(3µ) = 0 for the small-amplitude regimes] of flow.

7. Summary

We have obtained a two-dimensional “template” evolution equation: many
concrete evolution equations for the film thickness in two-fluid and single-
fluid systems follow from it by the simple substitution of the specific base
velocities and the interfacial pressure expressions. Hence, we have suggested
generalized plane Couette flows which, by rotating though all horizontal
directions, afford the small-amplitude saturation of the Rayleigh-Taylor in-
stability for all possible disturbances of the flow. The numerical simulations
of the pertinent evolution equation testify to the saturation of the instabil-
ity and reveal interesting rotating waves in large-time regimes.

We also considered a film spread on a ceiling as a case of the Rayleigh-
Taylor instability. Although the small-amplitude evolution equation is read-
ily obtained, the conditions of consistency of the derivation cannot be satis-
fied. This makes it unlikely that the small-amplitude saturation can occur,
but does not preclude the possibility for the dripping to be avoided by
the circular translational motion of the ceiling—with the wave amplitudes
being as large as the average thickness of the film. This possibility will
be investigated in the near future via numerical simulations of the large-
amplitude equation which approximates the evolution of the wavy film. The
corresponding laboratory experiment appears to be feasible as well.
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