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The nonlinear development of the interfacial-surfactant instability is studied for the
semi-infinite plane Couette film flow. Disturbances whose spatial period is close to
the marginal wavelength of the long-wave instability are considered first. Appropriate
weakly nonlinear partial differential equations (PDEs) which couple the disturbances
of the film thickness and the surfactant concentration are obtained from the strongly
nonlinear lubrication-approximation PDEs. In a rescaled form each of the two systems
of PDEs is controlled by a single parameter C, the ‘shear-Marangoni number’. From
the weakly nonlinear PDEs, a single Stuart–Landau ordinary differential equation
(ODE) for an amplitude describing the unstable fundamental mode is derived. By
comparing the solutions of the Stuart–Landau equation with numerical simulations
of the underlying weakly and strongly nonlinear PDEs, it is verified that the Stuart–
Landau equation closely approximates the small-amplitude saturation to travelling
waves, and that the error of the approximation converges to zero at the marginal
stability curve. In contrast to all previous stability work on flows that combine
interfacial shear and surfactant, some analytical nonlinear results are obtained. The
Hopf bifurcation to travelling waves is supercritical for C < Cs and subcritical
for C > Cs , where Cs is approximately 0.29. This is confirmed with a numerical
continuation and bifurcation technique for ODEs. For the subcritical cases, there are
two values of equilibrium amplitude for a range of C near Cs , but the travelling
wave with the smaller amplitude is unstable as a periodic orbit of the associated
dynamical system (whose independent variable is the spatial coordinate). By using
the Bloch (‘Floquet’) disturbance modes in the linearized PDEs, it transpires that all
the small-amplitude travelling-wave equilibria are unstable to sufficiently long-wave
disturbances. This theoretical result is confirmed by numerical simulations which
invariably show the large-amplitude saturation of the disturbances. In view of this
secondary instability, the existence of small-amplitude periodic solutions (on the
real line) bifurcating from the uniform flow at the marginal values of the shear-
Marangoni number does not contradict the earlier conclusions that the interfacial-
surfactant instability has a strongly nonlinear character, in the sense that there are no
small-amplitude attractors such that the entire evolution towards them is captured by
weakly-nonlinear equations. This suggests that, in general, for flowing-film instabilities
that have zero wavenumber at criticality, the saturated disturbance amplitudes do
not always have to decrease to zero as the control parameter approaches its value at
criticality.
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1. Introduction
The behaviour of liquid films adjacent to walls is of interest in many industrial

and biomedical problems such as coating, material processing, and airway reopening
in the lungs (e.g. Halpern et al. 2005). Typically, surfactants are present in real films
and may play an important role in their behaviour. There has been a considerable
amount of work on single-fluid free-surface flows with insoluble surfactants (see, e.g.,
the recent papers Gao & Lu 2006 and Levy & Shearer 2006). Much less work has
been done on flows that have both insoluble surfactants and non-zero interfacial
shear of velocity – which is typical, e.g., for two-fluid flows.

Recently, a new instability was uncovered, that of a shear flow of two fluid layers
with insoluble surfactant at their interface (see Frenkel & Halpern 2002 and Halpern
& Frenkel 2003). The linear behaviour of this long-wave instability has been further
investigated in Blyth & Pozrikidis (2004a, b), Wei (2005a, c), Frenkel & Halpern
(2005) and Wei (2007) (see also Wei & Rumschitzki 2005 and Wei 2005b for related
work on core-annular flows). The ‘interfacial-surfactant’ instability is driven by the
interaction of the capillary and Marangoni forces with the interfacial shear of the base
flow, and does not depend on gravity, inertia or any other factors, for its existence.
It disappears if the shear at the interface is zero (Frenkel & Halpern 2002; Halpern
& Frenkel 2003), like the classical, surfactantless instability of this flow due to the
interfacial jump of viscosity (Yih 1967; see also Hooper 1985 for the semi-infinite
geometry case, and Shlang et al. 1985 and Hooper & Grimshaw 1985 for weakly
nonlinear regimes; for a review, see the book Joseph & Renardy 1993). However, as
was mentioned in Frenkel & Halpern (2002), the Yih instability arises as an effect
of inertia appearing only in a higher-order correction to the leading-order Stokes
approximation, while the interfacial-surfactant instability appears in Stokes’ flows.
(For the perturbational effects of inertia on the interfacial-surfactant instability, see
Frenkel & Halpern 2005.)

In general, for any flows that have both interfacial shear and surfactants, no
analytical nonlinear results are known in the literature. Numerically, the nonlinear
stages of the ‘interfacial-surfactant’ instability were studied in Frenkel & Halpern
(2006) for the case when one fluid layer is a thin film and the other layer is
assumed to be of semi-infinite extent (Blyth & Pozrikidis 2004a, b included some
nonlinear simulations for the complementary case of comparable thicknesses). The
evolution of long-wave disturbances of the film thickness and the interfacial surfactant
concentration was shown to be governed by a coupled system of strongly nonlinear
differential equations (Frenkel & Halpern 2006). Also, a weakly nonlinear limit of
the system was documented. It was shown, however, that, in general, the saturation
of instability cannot be described by those weakly nonlinear equations because the
generic disturbances always grow to become large in the saturated regimes. This
fact was uncovered by numerical simulation with periodic boundary conditions
on spatial domains which were asymptotically large compared to the marginal
wavelength of instability. However, if the periodicity of unstable disturbances is
restricted to be close to the marginal wavelength, additional nonlinear terms become
essential in the weakly nonlinear partial differential equations (WNPDEs), and the
saturation of the instability may possibly occur with small amplitudes. If this really
happens, it would mean that there are stationary periodic small-amplitude solutions
on the infinite streamwise domain. However, the absence of such small-amplitude
solutions in numerical simulations on spatially extended domains indicates that they
must be unstable to long-wave disturbances. In the present paper, which includes
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analytical nonlinear results, we provide a theory that yields the small-amplitude
periodic solutions and also describes their secondary long-wave instability.

The saturation of the infinitesimal disturbances to small-amplitude solutions can be
described by a single nonlinear ODE governing a certain amplitude which determines
the disturbances of both the film thickness and surfactant concentration. We derive
this ODE, the Stuart–Landau equation with a cubic nonlinearity, similar to that
pioneered by Stuart (1960) and Watson (1960) (for single-fluid plane parallel flows,
in their case). For the long-wave instabilities of film flows with free surfaces,
this technique was used in, e.g., Gjevik (1970), Lin (1974), and Cheng & Chang
(1990). Similarly, we use a Galerkin type approximation of the disturbances by their
fundamental Fourier mode and the first overtone which is nonlinearly excited by the
self-interaction of the fundamental. (Actually that overtone consists of two modes due
to the two unknown components, the film thickness and the surfactant concentration.)
We note that for the two-fluid flows with interfacial shear, but without surfactants, the
Stuart–Landau theory was used in Blennerhassett (1980), Renardy (1989) and Chen
& Joseph (1991). The Stuart–Landau equation for the case with surfactants, but just
single-fluid and without any interfacial shear, was studied recently in Leshansky &
Rubinstein (2005).

The rest of the paper is organized as follows. In the next section, starting from
the full Navier–Stokes problem (given in appendix A), we use the lubrication
and Stokes approximations to obtain a simplified system of coupled equations for
the film thickness and the surfactant concentration. The linear stability governed
by (the linearization of) these equations is studied in § 3. In § 4, the evolution
governed by the Stuart–Landau equation, obtained in appendix B, is compared
with the numerical simulations of the underlying weakly and strongly-nonlinear
partial differntial equations (SNPDEs). Also, periodic travelling-wave solutions are
obtained by using the methods of dynamical systems (for both closed and open flow
conditions, similar to, e.g., Scheid et al. 2005). The secondary instability of small-
amplitude travelling waves is established in § 5. The results are summarized and
discussed in § 6.

2. Physical system and governing equations
We consider two immiscible fluid layers in a Couette flow between two shearing

parallel plates with an insoluble surfactant on the interface (see figure 1). For simplicity
let the densities of the two fluids be equal, which allows one to disregard gravity in the
evolution of disturbances. Let y∗ be the spanwise, ‘vertical’, coordinate (the symbol
∗ indicates a dimensional quantity). Let the interface be at y∗ = d1, where d1 is
the thickness of the thinner layer, and the y∗-axis is directed from the thinner layer
(‘film’) to the thicker one; we will call this the ‘upward’ direction (clearly, since there
is no gravity, the notions of ‘up’ and ‘down’ are a matter of convention). Thus,
d1 < d2 holds, where d2 is the thickness of the upper fluid. The direction of the
‘horizontal’ x∗-axis is chosen so that the velocity at the interface is positive, say U1

(whereas the velocity at the lower plate is zero). We will assume that the aspect ratio
is large, d2/d1 >> 1 (actually, in the zeroth order of the small parameter d1/d2, this
parameter disappears from the equations, so the upper fluid is effectively semi-infinite,
d2 = ∞). For sufficiently slow flow the inertia terms in the Navier–Stokes equations
(see Appendix A) are negligible. In the well-known lubrication approximation, which
implies that the streamwise characteristic length scale is much larger than the film
thickness (see, e.g., the review papers Frenkel & Indireshkumar 1996 and Oron, Davis
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Figure 1. Definition sketch for a two-layer plane Couette flow with an interfacial surfactant.

& Bankoff 1997), the simplified dynamic equations for the disturbances of velocity
components, u and v, and of pressure, p, are, in the dimensionless form,

∂p/∂x = ∂2u/∂y2, (2.1)

∂p/∂y = 0, (2.2)

∂v/∂y = −∂u/∂x. (2.3)

Our dimensionless variables are defined as follows:

(x, y) =
(x∗, y∗)

d1

(2.4)

for the streamwise coordinate x and the crossflow coordinate y;

t =
t∗

d1µ1/σ0

(2.5)

for time t , where µ1 is the film viscosity and σ0 is the surface tension corresponding to
the uniform surfactant concentration Γ ∗ = Γ0, whereas in general the surface tension
σ ∗ corresponding to the surfactant concentration Γ ∗ is assumed to be given by the
linear dependence σ ∗ = σ0 − E (Γ ∗ − Γ0), where E is a constant; further,

(u, v) =
(u∗, v∗)

σ0/µ1

(2.6)

for the streamwise velocity component u and the crossflow one v;

p =
p∗

σ0/d1

(2.7)

for the pressure p;

Γ = Γ ∗/Γ0 (2.8)

for the surfactant concentration Γ ; and

σ = σ ∗/σ0 (2.9)

for the surface tension σ .
In the base (plane Couette) flow, the interface is flat, h = 1, and the surfactant

concentration is uniform, Γ = 1, where the overbar indicates a base-flow quantity.
The velocity profiles are linear:

ū1(y) = ry, v̄1 = 0 , for 0 � y � 1, (2.10)

ū2(y) =
r

m
(m − 1 + y) , v̄2 = 0 , for 1 � y, (2.11)
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where m is the viscosity ratio, m = µ2/µ1. Clearly, the interfacial shear in the film
is given by the parameter r . (Simultaneously, r is the basic velocity of the interface,
since the dimensionless film thickness is unity.) It has been shown in Frenkel &
Halpern (2006) that the simplified boundary conditions for the disturbances problem
(2.1)–(2.3) can be written as follows. The boundary conditions at the lower plate
prescribe that

u = 0 = v at y = 0.

The terms with disturbance gradients of the semi-infinite layer (in which the
lubrication approximation does not hold) are estimated – similarly to, e.g., Babchin
et al. (1983) – to be negligible in the interfacial boundary conditions (since the
characteristic length scales in both directions in the thick layer are large compared to
the film thickness, the characteristic y-scale of the film disturbances), at least for m

of magnitude-order one. As a result, the simplified normal-stress boundary condition
at y = h(x, t) (where h is the film thickness) is written as

p = −[1 − M(Γ − 1)]hxx,

and the simplified tangential-stress boundary condition is

uy = −MΓx,

where the Marangoni number M is defined as M = EΓ0/σ0. The solution for u

in terms of h(x, t) and Γ (x, t) is substituted into the mass conservation equation,
ht + [

∫ h(x,t)

0
u1(x, y, t) dy]x = 0 (where u1 is the total velocity u1 = ry + u), and the

simplified surfactant conservation equation at the interface,

Γt + [Γ (rh + u)]x = 0

(in which the small molecular diffusivity of the surfactant has been neglected). As a
result, one arrives at the following system of two coupled evolution equations for the
film thickness h and the surfactant concentration Γ :

ht +
(

1
2
rh2 − 1

2
MΓxh

2 + 1
3
[(1 + M − MΓ )hxx]xh

3
)

x
= 0, (2.12)

Γt +
[
Γ

(
rh − MΓxh + 1

2
h2[(1 + M − MΓ )hxx]x

)]
x

= 0. (2.13)

These equations are consistent with earlier studies corresponding to r = 0 (e.g., Jensen
& Grotberg 1992; Schwartz, Weidner & Eley 1995). (However, r �= 0 is required for
the uniform base state to be unstable (Frenkel & Halpern 2002; Halpern & Frenkel
2003)).

We make the simplifying assumptions M � 1 and MΓ � 1. Rescaling x̃ = βx and
t̃ = rβt , where β = (3M/2)1/2, introducing the constant C = βM/2r = (3M3/(8r2))1/2

(the ‘shear-Marangoni number’) and dropping the tildes from the new variables, (2.12)
and (2.13) take the forms

ht +
[

1
2
h2 + C(−Γxh

2 + hxxxh
3)

]
x

= 0, (2.14)

Γt +
[
Γ

(
h + C(−2Γxh + 3

2
h2hxxx)

)]
x

= 0. (2.15)

In these simplified equations, a restriction on C comes from the condition that the
neglected inertia terms of the Navier–Stokes equations (A 1) be much smaller than
the retained viscous terms. Estimating the ratio of these terms, one arrives at the
requirement (see, e.g., Frenkel & Indireshkumar 1996) that the modified Reynolds
number be small, Re d1/L

∗ � 1, where Re is the Reynolds number based on the
interfacial velocity U1 = rσ0/µ1 and the thickness d1, and L∗ is the streamwise length
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scale of solutions. Using r = (3/8)1/2M3/2/C in the expression for U1, the validity
condition can be written as

C � M3/2ρσ0d1/(µ
2
1L), (2.16)

where L = L∗/d1, the dimensionless length scale. (Note that this restriction is still
compatible with arbitrarily small values of C – provided, e.g., that M is sufficiently
small.)

It is not difficult to obtain weakly nonlinear equations for the disturbances η and
g defined by

h = 1 + η, Γ = 1 + g.

One assumes the disturbances to be finite but small,

η � 1, g � 1,

and retains only the leading-order linear and the next-order quadratic terms in η and
g in (2.14) and (2.15). Changing to the coordinate z = x − t (which eliminates the
term ηx from (2.14) and the term gx from (2.15)), we obtain the weakly nonlinear
system

ηt +
(
Cηzzz − Cgz + 1

2
η2 + 3Cηηzzz − 2Cηgz

)
z
= 0, (2.17)

gt +
(
η + 3

2
Cηzzz − 2Cgz + 3Cηηzzz + ηg − 2Cηgz + 3

2
Cηzzzg − 2Cggz

)
z
= 0. (2.18)

(If the length scale of the waves is assumed to be large, ∂/∂z � 1, then the nonlinear
terms inside the parentheses of (2.17) and (2.18) that contain derivatives can be
omitted yielding the weakly nonlinear system which we studied in Frenkel & Halpern
(2006):

ηt +
(

1
2
η2 − Cgz + Cηzzz

)
z
= 0, (2.19)

gt +
(
ηg + η − 2Cgz + 3

2
Cηzzz

)
z
= 0. (2.20)

In that case the dominant balance contains just one nonlinear term. However, for the
waves whose wavelength is near the marginal value, the dominant balance involves
only the linear terms, and in the next order all quadratic terms must be included, as
in (2.17) and (2.18)).

For the rest of the paper we will study the system of equations (2.17) and (2.18).
Also, for comparison, we include our results of numerical simulation of the original,
SNPDE system (2.14) and (2.15).

3. The linear stability properties of the uniform flow
The linear stability theory of this flow has been briefly given in Frenkel & Halpern

(2006). Below, we develop the details necessary for the present study.
Neglecting the nonlinear terms in (2.17) and (2.18), we obtain the following linear

system for infinitesimal η and g:

ηt − Cgzz + Cηzzzz = 0, (3.1)

gt + ηz − 2Cgzz + 3
2
Cηzzzz = 0. (3.2)

Below we will use a moving reference frame, ξ = z − V0t . The modified system has
additional terms containing the speed V0 (which remains arbitrary until we make a
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Figure 2. Dispersion curves for (a) the unstable and (b) the stable normal modes for the
four values of the parameter C displayed.

specific choice below):

ηt = V0ηξ + Cgξξ − Cηξξξξ , (3.3)

gt = V0gξ − ηξ + 2Cgξξ − 3
2
Cηξξξξ . (3.4)

For each wavenumber α there are two different normal modes, of the form (k = 1, 2)[
η

g

]
∝

[
1

gk(α)

]
eiαξeγk(α)teiωk(α)t , (3.5)

where the symbol ∝ indicates arbitrary scalar multiple, γk(α) is the growth rate and
ωk(α) is the frequency. (We note that in terms of α, the validity condition (2.16) is
rewritten as C � αM3/2ρσ0d1/µ

2
1, since the characteristic length scale is the mode

wavelength, L = 2π/α.) One of the modes, which we assign to k = 2, decays for all
α, and the other, with k = 1, is unstable (provided the shear r �= 0) for ‘long’ waves,
0 < α < α0 (see the dispersion curves in figure 2). Indeed, the amplitude eigenvectors
of the two modes,

v1(α) =

[
1

g1(α)

]
(3.6)

and

v2(α) =

[
1

g2(α)

]
, (3.7)

satisfy the eigenvalue relations (from (3.3) and (3.4))

L(α)vk(α) = λk(α)vk(α), (3.8)
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where

L(α) =

[
iV0α − Cα4 −Cα2

−iα − 3
2
Cα4 iV0α − 2Cα2

]
(3.9)

and

λk(α) = γk(α) + iωk(α). (3.10)

The eigenvectors vk(α) in (3.8) are determined by

gk(α) = −α2 − Λk(α)

Cα2
, (3.11)

where

Λk(α) = λk(α) − iαV0 (3.12)

are the two solutions (k = 1, 2) of the characteristic quadratic equation

Λ2
k(α) + Cα2(2 + α2)Λk(α) + Cα2

(
1
2
Cα4 − iα

)
= 0. (3.13)

One of the roots here, designated Λ2(α), is found to have its real part γ2(α) negative
for all α (except γ2(0) = 0); the other root is found to have a positive marginal
wavenumber α0 such that γ1(α) > 0 for 0 < α < α0, with γ1(α0) = 0, and γ1(α) < 0
for α > α0.

We choose V0 to be such that ω1(α0) = 0; then, since γ1(α0) = 0, the marginal
disturbance is steady in this reference frame: λ1(α0) = 0. Hence, (3.12) becomes
Λ1(α0) = −iα0V0, and the real part of the quadratic equation (3.13) yields

V0 = − 1

2 + α2
0

. (3.14)

Using this to eliminate V0 in the imaginary part of quadratic equation (3.13), one
finds the marginal wavenumber corresponding to a given C:

α0 =

((
1 +

21/2

C

)1/2

− 1

)1/2

. (3.15)

Correspondingly, the marginal C0 for a fixed α is

C0 =

√
2

α2(2 + α2)
. (3.16)

From (3.14), V0 depends on C only via α0.
Figure 2 shows typical dispersion curves representing the dependence of the growth

rate on the wavenumber for the two modes with a few representative values of C.
They illustrate the long-wave character of the instability. (In the limit of small α,
the first and the last (out of the five) terms of the dispersion equation (3.13) are in
dominant balance. This gives the long-wave growth-rate asymptotics γ1(α) ≈

√
Cα3/2.

As a check, when translated back to the original non-dimensionalization units of
measurement, the obtained asymptotics coincides with the corresponding result of
Frenkel & Halpern 2002 (see also Wei 2007). For C = 0, which implies the Marangoni
number M = 0, the growth rate is zero at any wavenumber – as it should be in the
absence of Marangoni forces. As C decreases to 0, the maximum value can grow as is
seen in the figure, but with the corresponding wavenumber αmax growing to infinity,
so that at any fixed α the limit of the growth-rate function is still zero. Then, there
is no singularity at C = 0: there is convergence, albeit of the non-uniform type, to
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Figure 3. (a) Marginal stability curve in the plane of wavenumber α and the control parameter
A = C−1/2 has a criticality point at the zero wavenumber; (b) dispersion relation for A = 10−4;
and (c) the ratio of the marginal wavenumber α0 to the maximum-growth one αmax for A � 1.

the limiting function which is the zero function, γ1(α) = 0 for all α. If, in addition to
just examining the properties of (2.17)–(2.18) in abstract, one considers their relation
to the physical system, it should be noted that the condition (2.16) is equivalent to
r � α−1µ2

1/(ρσ0d1); so, for a given α, the parameter C is not allowed to go to zero
in the way of increasing the shear r to infinity. Instead, the limit C → 0 means
M → 0. Similarly, the opposite limit, C → ∞, means r → 0, since it has been assumed
from the beginning that M � 1.) Figure 3(a) is the curve of marginal stability
showing the dependence between the control parameter A = C−1/2 and the marginal
wavenumber α0 as determined by (3.15). (In the limit of A � 1, the asymptotic
behaviour is linear, A ≈ 4

√
2α0. In the opposite limit, A → ∞, one finds A ≈ 2−1/4α2

0 .)
Figure 3(b), the dispersion curve for a small value of A (or, correspondingly, very
large C), introduces the wavenumber αmax of the fastest-growing mode. (Also, note the
significant difference of this case, small A, from the cases with A � 1 of figure 2: in the
former case, the band of modes of nearly maximum growth rates extends over many
decades. In addition figure 3(c) suggests that α0/αmax ∝ A−1/3, and thus αmax � α0 at
A � 1, whereas α0 and αmax are of the same magnitude order for A � 1. These facts
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are essential for some of the considerations below). The phase shift between η and g

for the two modes, arg(gk(α)), and the amplitude ratios gmax/ηmax = |gk(α)| as functions
of α and C are shown in figures 4 and 5. The velocities Vk = ωk/α of normal modes
are shown in figure 6.

Multiplying (3.3) by η and (3.4) by g, integrating them over the interval of spatial
periodicity, and taking into account that η and g are out of phase by nearly π
in unstable modes shows that the fourth derivative (capillary) term is stabilizing in
(3.3) but destabilizing in (3.4). Similarly, the Marangoni term, the one with gξξ , is
stabilizing for g but destabilizing with regard to η.

For two-component 2π/α-periodic vector fields on R1, [η(x), g(x)]T , a complete
basis consists of u1(n)einαx and u2(n)einαx where n varies over all integers and, for each
n, {u1(n), u2(n)} is a basis of R2. In particular, below we choose u1(n) and u2(n) to
be the eigenvectors vk(nα) (see (3.6) and (3.7)),

uk(n) =

[
1

gk(nα)

]
(3.17)

(where k = 1, 2). So, any time-dependent vector field [η(x, t), g(x, t)]T such that it is
2π/α -periodic in space and has the zero spatial mean, can be expanded as[

η(x, t)
g(x, t)

]
=

∞∑
n=1

(
an(t)

[
1

g1(nα)

]
+ bn(t)

[
1

g2(nα)

])
eiαnx + c.c., (3.18)
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Figure 5. The marginal values of the quantities of figure 4 as functions of the parameter C.

where c.c. stands for complex conjugate. (Note that the term with n = 0 is absent
because of the zero-average condition.)

4. Stuart–Landau evolution
For the wavenumber just below the marginal value (or, if α is fixed, for C just

below the value C0 for which α is the marginal wavenumber), the instability is
weak, γ1 → 0 as α ↑ α0 (or C ↑ C0). We can expect that the unstable fundamental
mode, of wavenumber α, will generate, by the nonlinear interaction with itself, the
linearly stable overtones of wavenumber 2α, and the interaction of the latter with
the fundamental will lead to the saturation of growth at small amplitudes. (It is also
expected that the velocity of saturated travelling waves W is small, W → 0 as α ↑ α0.)
This kind of phenomenon is typically described by the Stuart–Landau equation, which
we derive for the present case in appendix B. (We note that due to the translational
invariance, in the absence of reflectional symmetry for all the evolution systems of
equations here, e.g., (2.17)–(2.18), the problem with periodic boundary conditions
has SO(2) symmetry, and the primary bifurcations from the uniform state are the
Hopf bifurcations yielding travelling waves (see, e.g., Golubitsky, Stewart & Schaeffer
1988)). We expect the amplitude of the fundamental to be of the order ε1/2 with ε

defined as the relative deviation of the ‘shear-Marangoni’ number C from its marginal
value C0:

ε =
C0 − C

C0

. (4.1)
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Figure 6. Wavenumber dependence of the velocities of (a) unstable and (b) stable
eigenmodes for different values of the parameter C.

The amplitude of the 2α overtone is expected to be of order ε and the higher
overtones, of wavenumbers nα (n > 2), are of higher orders in ε. So we can truncate
the expansion (3.18) and look for the weakly nonlinear solutions of the form[

η

g

]
=A1(α)(t)

[
1

g1(α)

]
eiαξ + A2(α)(t)

[
1

g2(α)

]
eiαξ

+ A1(2α)(t)

[
1

g1(2α)

]
e2iαξ + A2(2α)(t)

[
1

g2(2α)

]
e2iαξ + c.c. + O(ε3/2) (4.2)

(where A2(α) is expected to be O(ε3/2) as well, but is displayed for the symmetry of
the expression).

In Appendix B, a Stuart–Landau equation for the amplitude A1(α) is obtained,
(B 18). It readily follows from this equation that

d|A1(α)|2
dt

= 2γ1(α)|A1(α)|2 − r |A1(α)|4, (4.3)

dθ

dt
= ω1(α) − 1

2
i |A1(α)|2, (4.4)

where θ is the phase of A1(α), so that A1(α) = |A1(α)|eiθ , and r and i are the real and
imaginary parts of , respectively ( = r + ii). If the initial amplitude is small, the
nonlinear term is negligible and the disturbance grows exponentially. As a result, the
nonlinear term grows faster than the linear one. If r > 0, this leads to a saturated
state, a fixed point of the dynamical system, for which the time derivative is zero and
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Figure 7. The real part of the Landau constant versus the parameter C0 for (a) the range of
small C0 and (b) a range of larger C0. The inset in (b) zooms in on the range of C0 in which
r changes sign.
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Figure 8. (a) Evolutions of the quantity ηmax/ε
1/2 for a case with a negative Landau parameter

r (here, C0 = 0.5): a large amplitude saturation for the SNPDE (here, with ε = 10−4) but a
blow-up for both the Stuart–Landau ODE and WNPDE evolutions; (b) relative error between
the Stuart–Landau equation and the indicated PDEs.

thus

|A1(α)|2 = 2
γ1(α)

r

. (4.5)

However, as figure 7 testifies, the quantity r becomes negative when C is greater
than a threshold value Cs ≈ 0.29. For the negative values of r , the instability does
not saturate at small amplitudes and the disturbance grows out of the validity range
of the Stuart–Landau equation. Such an evolution is shown in figure 8 along with
the corresponding solutions of the WNPDEs and the SNPDEs. We discuss details in
a separate subsection that follows the next one (the latter tackles the opposite case,
that of positive r ).
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Figure 9. (a) Evolutions of the quantity ηmax/ε
1/2 for a case with a positive r : small-amplitude

saturation (here C0 = 10−3 and ε = 10−4); (b) relative error between the Stuart–Landau
equation and the WNPDE.

4.1. Stuart–Landau travelling waves

With positive r , (4.4) and (4.5) yield a linear dependence of θ on time, θ = Ωt at
large t , where

Ω =

(
ω1(α) − γ1(α)

i

r

)
. (4.6)

The saturated solution describes a travelling wave of the length 2π/α. It corresponds
to the Hopf bifurcation of the dynamical system to the limit cycle with the period
2π/Ω . The Hopf bifurcation is supercritical: the amplitude (4.5) goes to zero as ε ↓ 0.
It is also degenerate, in the sense that the frequency (4.6) goes to zero as ε ↓ 0. We
note that the period 2π/Ω depends on the reference frame. It becomes infinite (at a
fixed finite ε) in the ‘comoving’ reference frame, given by ζ = ξ − Wt , where W is
determined from

ω1(α) − γ1(α)
i

r

− αW = 0 (4.7)

with ω1(α) and i/r depending on W , since V0 + W takes the place of V0 in relations
such as (3.12). The zero Ω corresponds to a time-independent solution (which is still
2π/α periodic in space).

In figure 9 we show a typical solution of the Stuart–Landau equation compared
with the solution of the full (weakly nonlinear) PDEs (2.17) and (2.18) with the same
parameter values and initial conditions. The agreement is very good. We have also
checked (not shown here) that for this range of (sufficiently small) C in which the
amplitudes remain small for all time, the WNPDEs give a good approximation to the
strongly nonlinear evolution for all time.

As figure 10 illustrates, the relative error of the Stuart–Landau equation decreases
with ε (asymptotically, as ε1/2). Figure 11 shows the dependence (in the ζ frame) of
the normalized saturated amplitude, |A1(α)|ε−1/2, on C. (The quantity |A1(α)| determines
the amplitude of η.)

4.2. The range of subcritical bifurcation

As figure 8 shows, in this range of (larger) C, the strongly nonlinear evolution still
leads to saturation, but at large amplitudes, which are beyond the range of validity
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Figure 11. Normalized saturated amplitude as a function of C.

of both the Stuart–Landau and the weakly nonlinear equations. All three evolutions
are close as long as the amplitudes are still small, but diverge from one another at
large amplitudes. The bifurcation from the flat solution at the marginal value of α in
this range of C is subcritical in contrast to the supercritical bifurcation at smaller C

(discussed in the previous subsection).

4.3. Dynamical systems approach

These conclusions about the character of the bifurcation are corroborated by looking
for travelling-wave solutions as periodic solutions of a dynamical system in which the
spatial coordinate is the independent variable. In the reference frame which moves
with the same velocity W1 as the travelling wave does, the solution does not depend
on time, so that the time-derivative term disappears from (2.14) and (2.15), which
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thus become just ODEs:[
−W1h +

(
1
2
h2 + C(−Γ ′h2 + h′′′h3)

)]′
= 0, (4.8)[

−W1Γ +
(
Γ

(
h + C

(
−2Γ ′h + 3

2
h2h′′′)))]′

= 0, (4.9)

where ′ stands for the derivative with respect to the spatial variable ζ = x −W1t (note
the relation between the mutual velocities of the different reference frames used here:
W1 = W + V0 + 1). Integrating once, these become

− W1h +
(

1
2
h2 + C(−Γ ′h2 + h′′′h3)

)
= Q,

− W1Γ +
(
Γ

(
h + C(−2Γ ′h + 3

2
h2h′′′)

))
= Φ,

where Q and Φ are the integration constants. Assuming that h �= 0 and Γ �= 0, h′′′

and Γ ′ can be expressed in terms of h and Γ :

h′′′ = F [h, Γ ] =
1

Ch2

(
4Q

h
− 2Φ

Γ
+ 2W1

)
, (4.10)

Γ ′ = G[h, Γ ] =
1

Ch

(
3Q

h
− 2Φ

Γ
+ W1 +

1

2
h

)
(4.11)

(where we have introduced the new functions F and G). The above set of equations can
be rearranged as a four-dimensional dynamical system of (autonomous) differential
equations:

U ′
1 = LU2, U ′

2 = LU3, U ′
3 = LF [U1, U4], U ′

4 = LG[U1, U4], (4.12)

where U1 = h, U2 = h′, U3 = h′′, U4 = Γ , L = 2π/α, and the symbol ′ now indicates
differentiation with respect to ξ = ζ/L. The continuation and bifurcation software for
ODEs AUTO-07P (Doedel et al. 2006) was used to determine periodic solutions of
(4.12). To ensure spatial periodicity, the following boundary conditions are applied:

U1(0) = 1, Ui(1) = Ui(0) for i = 1, 2, 3, 4. (4.13)

In addition, the following two integral conservation constraints are imposed:∫ 1

0

U1(ξ ) dξ = 1 and

∫ 1

0

U4(ξ ) dξ = 1. (4.14)

These constraints and the first condition of (4.13) are appropriate for the so-called
‘closed flow conditions’. (For a detailed discussion of the closed and open flow
conditions, see e.g., Scheid et al. (2005).)

A certain number of free parameters must exist in order for AUTO to carry out
a continuation calculation. For a boundary value problem, that number is NBC +
NINT − NDIM − 1, where NBC is the number of boundary conditions, NINT is
the number integral constraints and NDIM is the order of the system of differential
equations. For our problem, the number of free parameters is four: α, Q, Φ, W1. The
starting point for the continuation is the marginal mode with α = α0, W1 = V0 + 1,
Q = −W1 +1/2 and Φ = −W1 +1. In order to obtain non-trivial solutions at the start
of the continuation, a small-amplitude perturbation is added to the basic uniform
profiles of the dependent variables Ui , namely to Ū1 = Ū4 = 1 and Ū2 = Ū3 = 0.

The bifurcation diagrams for different characteristics of the travelling waves are
shown in figure 12. (We have followed only the primary bifurcations from the uniform
state, because we are interested in small-amplitude travelling waves only. Also, similarly
to Scheid et al. (2005), we do not show the multihump solutions, which are just trains
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Figure 12. Characteristics of the travelling waves as functions of the wavenumber α for
several values of C0 identified next to the curves, for closed flow conditions: (a) the maximum
and minimum film thickness; (b) the maximum and minimum surfactant concentration; and
(c) the wave speed.

of n identical single-hump profiles, where n = 2, 3, . . . ). In particular, one can see in
figure 12 that there is a value Cs of C, confined to the interval 0.2 < Cs < 0.4 (more
precisely, as was noted before in the discussion of figure 7, Cs ≈ 0.29), such that
the bifurcation from the basic uniform flow is supercritical for C < Cs but becomes
subcritical for C > Cs . For the subcritical continuation curves, there is a region of
wavenumbers delimited below by the marginal one, for which there are two amplitude
values at each wavenumber. As is usual in such cases, only the equilibrium with
the larger amplitude is stable (as a periodic orbit of the dynamical system) and the
other one is unstable. The profiles of travelling waves are shown in figure 13. As the
wavenumber is decreased from its marginal value, the profiles become progressively
less sinusoidal, and the amplitudes grow. Also, long stretches of flat film and uniform
surfactant concentration appear in the profiles at the smaller values of α. One notices
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Figure 13. Travelling-wave profiles for one spatial period (closed flow conditions) for several
values of the wavenumber α (C = 10−3): (a) film thickness profiles, and (b) surfactant
concentration profiles.

that some smaller waves in the profile are seen for α = 2 and smaller values of α.
However, they appear at the back of the film thickness pulse (whose front is indicated
by the largest slope) instead of the usual ‘bow waves’ in front of the pulse. Also, one
can see that the pulses of the surfactant concentration are steeper at the back than
at the front of the pulse.

The latter property though is not universal. Figure 14, which documents the
situation at a larger value of the shear-Marangoni parameter, namely C = 1, has
steeper fronts of the concentration pulses for some α and steeper backs for other
α. Also, the flat parts of the film profile have very small thicknesses, especially for
some intermediate values of α. Along with these ‘dry spots’ in film-thickness profiles,
there are ‘depleted spots’ in the profiles of surfactant concentration, where its value
is close to zero. The variation of the film thickness, hmax − hmin , is large in contrast to
the cases with small C. On the other hand, the variation of surfactant concentration
decreases with C.

4.4. The open flow condition

The space-periodic boundary conditions are appropriate for closed flows, such as the
one in a closed toroidal channel (e.g. one with a rectangular cross-section and with
one of the flat annular walls rotating, as in Barthelet, Charru & Fabre 1995 and
Dong & Johnson 2005). For other types of flows, where the fluid flowing out is not
reinjected at the inlet, and the disturbance of flux is imposed at the inlet end of the
channel, the so-called open flow conditions are pertinent.

While for the closed flow condition, the (spatial) average of the film thickness
is conserved during continuation (see, e.g., Scheid et al. 2005), for the open flow
conditions, the (spatial) average of the volume flux q = h2/2 + C(−Γxh

2 + hxxxh
3)

is conserved (see (2.14); clearly, q = W1h + Q where Q is the flux in the comoving
reference frame):

〈q〉ξ = 1
2
, (4.15)
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Figure 14. Travelling-wave profiles for one spatial period (closed flow conditions) for several
values of the wavenumber α (C = 1): (a) film thickness profiles, and (b) surfactant
concentration profiles.

where 〈·〉ζ = (1/L)
∫ L

0
· dζ =

∫ 1

0
· dξ = 〈·〉ξ . Here, 1

2
is the flux q of the basic flat-film

flow. Similarly, the average flux φ of the surfactant concentration is conserved: the
relevant equations are φ = Γ

(
h + C(−2Γxh + 3

2
h2hxxx)

)
from (2.15), φ = W1Γ + Φ

and 〈φ〉ξ = 1. Therefore, for the open flow condition, the integral constraints are as
follows: ∫ 1

0

U1(ξ ) dξ =
1
2

− Q

W1

and

∫ 1

0

U4(ξ ) dξ =
1 − Φ

W1

, (4.16)

and the boundary condition U1(0) = 1 changes to U1(0) =< h >ξ= (1
2

− Q)/W1. (It is
clear that as long as the resulting profile of h happens to take the value h = 1 at some
place, the results are identical with those obtained using the condition U1(0) = 1.)

The bifurcation diagrams for the open flow cases appear in figure 15. Figure 15(b)
shows that the minimum surfactant concentration of the travelling wave becomes
larger than 1 at small α, which obviously would be impossible for closed flow
cases since for them the average value of Γ is 1. The value Cs of C at which the
bifurcation becomes subcritical is somewhat larger than the one for the closed flow
case: 0.4 < Cs < 0.6. The spatial profiles of travelling waves for open flow cases
appear in figures 16 and 17. They are similar to the closed flow cases when C is small.
However, for large C, in contrast to closed flow cases, there are no extended stretches
of uniform film thickness and surfactant concentration. Instead, the film thickness
tends to zero at just a single point, and the surfactant concentration develops a steep
front.

5. The secondary instability
In the comoving reference frame, (see (4.7)), the saturated solution is time-

independent and periodic in space (see (4.2)):

[η, g]Ts = [N1, G1]
T eiαζ + [N2, G2]

T e2iαζ + c.c. (5.1)
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Figure 15. Characteristics of the travelling waves as functions of the wavenumber α for
several values of C0, for open flow conditions: (a) The maximum and minimum film thickness;
(b) the maximum and minimum surfactant concentration; and (c) the wave speed.

Here N1, N2, G1 and G2 are defined in terms of the saturated amplitudes as follows:
N1 = A1(α), N2 = A1(2α) + A2(2α), G1 = A1(α)g1(α) and G2 = A1(2α)g1(2α) + A2(2α)g2(2α).
(We have kept the terms O(ε1/2) and O(ε), and neglected terms O(ε3/2), such as
those containing A2(α).) These coefficients can, in principle, be found analytically
using (3.13), (3.14), (3.12), (3.11), (3.10), (B 8), (B 10), (B 20), (4.5), (4.6) and (B 17),
which only involves solving algebraic equations of degree at most four. However,
the formulas are not simple, and in practice it is more convenient to solve the
quadratic equation (3.13) and the quartic equation (4.7) by standard numerical
methods.
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Figure 16. Travelling-wave profiles for one spatial period (open flow conditions) for several
values of the wavenumber α (C = 10−3): (a) film thickness profiles, and (b) surfactant
concentration profiles.
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Figure 17. Travelling-wave profiles for one spatial period (open flow conditions) for several
values of the wavenumber α (C = 1): (a) film thickness profiles, and (b) surfactant
concentration profiles.

To study the stability of these time-independent space-periodic states to infinitesimal
disturbances, one should consider normal modes of the Bloch type (see, e.g.,
Kelly 1967, Herbert 1988, Frenkel 1991, Chang, Demekhin & Kopelevich 1993,
Indireshkumar & Frenkel 1996; here we closely follow the last paper):

[N, G]T ∝ eP t+iαKζ

[
l∑

m=−l

Bmeimαζ ,

l∑
m=−l

Cmeimαζ

]T

. (5.2)
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We substitute [η, g]T = [η, g]Ts + [N, G]T into the WNPDEs (see (2.17) and (2.18))
appropriate for the comoving reference frame,

ηt − (V0 + W )ηζ +
(
Cηζζζ − Cgζ + 1

2
η2 + 3Cηηζζζ − 2Cηgζ

)
ζ

= 0, (5.3)

gt − (V0 + w)gζ +
(
η + 3

2
Cηζζζ − 2Cgζ

+ 3Cηηζζζ + ηg − 2Cηgζ + 3
2
Cηζζζ g − 2Cggζ

)
ζ

= 0, (5.4)

and linearize these with respect to N and G. The combined coefficient of einζ in each
of (5.3) and (5.4) should vanish for each m (m = −l, . . . , 0, . . . , l), in view of the linear
independence of the exponentials. This yields an eigenvalue problem for the (complex)
growth rate P . The eigenvalue P = Pr +iPi is found by solving the eigenvalue problem
numerically. The number of modes l is increased until convergence to a prescribed
accuracy is achieved. For example, if we take l = 0 (the smallest possible value of l),
we obtain ∣∣∣∣p + α4K4C − iα(V0 + W ) α2K2C

iαK + 3
2
α4K4C p + 2α2K2C − iα(V0 + W )

∣∣∣∣ = 0, (5.5)

where C = C0(1−ε). This equation does not capture the interaction of the disturbance
with the primary saturated solution; only the basic uniform flow is involved. However,
this interaction will appear starting with l = 1, in the homogeneous equations for
{B−1, C−1, B0, C0, B1, C1}. For example, the top row in the coefficient matrix of
the homogeneous system, keeping only the leading-order terms, O(1), and the first
correction terms, O(ε1/2), is as follows:

p + α4K4
−C0 − iαK−V0, α2K2

−C0,(
iα + 3Cα4(K3 − 1)

)
K−A∗

1(α) − 2Cα2K−B∗
1(α), 2Cα2KK−A∗

1(α),(
iα + 3Cα4(K3

+ − 23)
)
K−A∗

2(α) − 4Cα2K−B∗
2(α), 2Cα2K+K−A∗

2(α),

⎫⎪⎬
⎪⎭ (5.6)

where K− = K − 1 and K+ = K + 1. We do not show the remaining five rows which
are obtained similarly. In fact we took into account the higher-order, O(ε), terms
including the last term of (5.1), in the saturated primary-instability state.

We are interested in the value of K and the corresponding eigenvalue whose real
part is the largest. This maximum real part, M = maxPr , which is the growth rate
of the instability, is shown as a function of the primary wavenumber α in figure 18
for three different values of ε. The corresponding value of the Bloch’s wavenumber
K at which the maximum growth rate occurs is shown in figure 19. The fact that the
values of M are everywhere positive shows that the steady periodic states are always
unstable to disturbances containing longer waves. We have observed that the curve
in figure 19 with ε = 10−8 is practically indistinguishable from the one (not shown
here) of the maximum growth rate vs the marginal wavenumber α of the primary
instability. This indicates that for very small ε, the primary wavy flow is negligible
and the secondary instability is caused by interaction directly with the basic, flat-film,
uniform flow. For larger ε and sufficiently long waves, as the horizontal parts in
figure 19 show, the primary modes with half the wavenumber are responsible for the
secondary instability, which thus has a subharmonic character.

We have also (numerically) followed the evolution of disturbances (of the same
travelling-wave equilibria) using the full PDEs (2.17) and (2.18). If the computational
domain is long enough to allow for sufficiently long-wave disturbances, the amplitudes
of η and g grow due to the secondary instability and reach values of order 1. The
weakly nonlinear equations are expected be good for small amplitudes. However, as
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Figure 18. Maximum growth rate of the secondary instability M as a function of the
primary wavenumber α for three values of ε.
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Figure 19. Secondary wavenumber K of the fastest growing mode vs the primary
wavenumber α.

figure 20 shows, when C0 is small, the WNPDEs give a good description of saturation
even though the saturation amplitude of the surfactant concentration is large. The
profiles of saturated waves shown in figure 21 are large-amplitude and non-sinusoidal.
At a larger value of C0, figure 22 shows that the strongly nonlinear evolution leads
to saturation at large amplitudes. The WNPDE evolution (not shown) turns out to
be very close to the strongly nonlinear one up to the point marked on the curve
in figure 22; however, the weakly nonlinear amplitudes blow up beyond that point.
Figure 23 testifies that as C0 increases, the profiles become progressively more non-
sinusoidal. In all cases, the initial exponential growth of small disturbances confirms
the results of the linear theory of the secondary instability.

6. Discussion and conclusions
For the semi-infinite Couette-film flow with an insoluble surfactant at the interface,

we have concentrated on the parametric regimes in which the marginal wavelength
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Figure 20. Typical saturation evolutions of the secondary instability for (a) the film thickness
and (b) the surfactant concentration (C0 = 10−4, ε = 10−4 and the domain length is four times
the primary wavelength).
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Figure 21. Saturated profiles of (a) the film thickness and (b) the surfactant concentration
(here, C0 = 10−4, ε = 10−4 and the domain length is four times the primary wavelength).

of the interfacial-surfactant instability is much larger than the basic film thickness
and the lubrication approximation is valid in the film (see Frenkel & Halpern 2006).
We have obtained the WNPDEs appropriate for disturbances whose spatial period is
close to the marginal wavelength.

The latter are different from both the general SNPDEs and the WNPDEs
appropriate for disturbances of longer wavelengths. They have some features in
common: each of the three systems consists of two PDEs, couples the film thickness
and surfactant concentration and is rescaled to a canonical form which is controlled
by a single parameter, the ‘shear-Marangoni number’ C. For the values of C below
some separating value Cs , our strongly nonlinear simulations uncovered saturation
to small-amplitude travelling waves. Such saturation should be amenable to an
approximate description with the WNPDEs, and our simulations of the latter confirm
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Figure 22. SNPDE evolution similar to the one in figure 20 but for C0 = 10−1. The WNPDE
follows the curve very closely up to the points on the curves marked by circles; for larger times
the amplitudes of the WNPDE blow up in a very short time.
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Figure 23. Saturated profiles of (a) the film thickness profiles and (b) the surfactant
concentration (C0 = 10−1, ε = 10−4 and the domain length is four times the primary

wavelength).

that such is the case. Moreover, we have obtained a Stuart–Landau ODE for an
amplitude describing the (unstable) fundamental mode, by taking into account the
(two) half-wavelength linearly damped harmonics which are nonlinearly excited by the
fundamental mode. We have demonstrated that this ODE is capable of approximating
the process of saturation, and that its error dies out as expected as the conditions
approach the marginal case.

For shear-Marangoni numbers larger than the separating value Cs , the Hopf
bifurcation to the travelling waves in the Stuart–Landau equation is subcritical, in
contrast to the supercritical bifurcation for C < Cs . The strongly nonlinear saturation
is still possible, but cannot be expected to be described all the way to the very end by
either the WNPDEs or the Stuart–Landau ODE. In fact, in a case study (see figure 8)
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in which the SNPDEs show saturation, solutions of both the WNPDE system and of
the Stuart–Landau equation blow up at a finite time (remaining close to each other
up to the instant when the simulation run had to be stopped).

We have studied the change of the travelling-wave equilibria as the wavenumber
is decreased out of the near-marginal domain, by continuation of the solutions of
the dynamical-system generated by the SNPDEs, with the spatial coordinate being
the independent variable of the dynamical ODEs (and with the time dependence
being eliminated by changing to the reference frame affixed to the wave). The results
(obtained with the continuation and bifurcation software for ODEs, AUTO-07P
(Doedel et al. 2006) and presented, for the closed flow condition, in figures 12–14)
confirm that there is a value Cs of C, confined to the interval 0.2 < Cs < 0.4, such that
the bifurcation from the basic uniform flow is supercritical for C < Cs but becomes
subcritical for C > Cs (more precisely, Cs ≈ 0.29). For the subcritical continuation
curves, there is a region of wavenumbers (delimited below by the marginal one,
and above by the value corresponding to a saddle-node bifurcation) for which there
are two amplitude values for each wavenumber. As is usual in such cases, only the
equilibrium with the larger amplitude is stable (as a periodic orbit of the dynamical
system) and the other one is unstable. The spatial profiles of the film thickness and
surfactant concentration have some interesting features. For the open flow condition,
the results (presented in figures 15–17) indicate, in particular, that the value Cs

separating supercritical and subcritical regimes is larger than the one for the closed
flow condition; for the open flow case, 0.4 < Cs < 0.6. For large C, the film thickness
tends to zero at a point and the surfactant concentration develops a steep front.

We have considered the stability of the travelling-wave solutions when the
disturbances of larger wavelengths than that of the primary wave are admitted. To this
end, we linearized the PDEs about the steady space-periodic primary equilibria, and
used the Bloch (‘Floquet’) disturbance modes. All the small-amplitude travelling waves
turned out to be unstable to sufficiently long-wave disturbances. This theoretical result
was borne out with numerical simulation of both the SNPDEs and WNPDEs, starting
with the travelling-wave solutions of a near-marginal wavelength which were slightly
disturbed by long-wave additives. The disturbances grew until eventually saturation
happened in the strongly nonlinear evolution, but with at least one of the saturated
amplitudes being not small. For smaller values of C, where characteristically the
saturated amplitudes of film thickness are small but those of surfactant concentration
are large, the WNPDEs, somewhat surprisingly, are still good for all time. However,
for larger values of C, the weakly nonlinear solutions follow the underlying strongly
nonlinear evolution only as long as the amplitudes are small, but afterwards they
part from the saturating strongly nonlinear solutions and blow up at finite time (see
figure 22).

In view of the fact that the secondary instability is unavoidable, the existence
of the small-amplitude travelling-wave solutions is compatible with the observation
(see Frenkel & Halpern 2006) that for at least one of the two unknowns (the film
thickness and the surfactant concentration) the disturbance becomes large-amplitude
in the course of evolution. For the near-criticality conditions, this suggests that
the amplitudes of saturated disturbances may not decrease to zero as the control
parameter approaches its critical value (and the corresponding marginal wavenumber
approaches zero, see figure 3a). This is in contrast to the case of instabilities with a
non-zero wavenumber at criticality (where the saturation is described by the Stuart–
Landau equation or its PDE counterpart, the Ginzburg–Landau equation). More
remarkably, the previously known cases of instabilities with zero wavenumber at
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criticality with the evolution of disturbances being governed by equations of the
Kuramoto–Sivashinsky type featured small-amplitude saturation (see, e.g., Babchin
et al. 1983 for the Rayleigh–Taylor instability, Hooper & Grimshaw 1985 for the Yih
instability, Frenkel et al. 1987 for the instability of core-annular flows, and Sivashinsky
& Michelson 1980 for the instability of falling films), perhaps suggesting that the near-
critical small-amplitude saturation is a general property of such instabilities as well.
However, the interfacial-surfactant instability appears to provide a counterexample.
The key to the special character of this instability might be the fact that the
corresponding dispersion curves are very wide, as in figure 3(b). Indeed, in the
Ginzburg–Landau (‘non-zero criticality’) case, the weakly unstable modes comprise a
narrow band and interact only with finitely-damped modes far outside this unstable
band. In the Kuramoto–Sivashinsky zero-criticality case, the modes with the near-
maximum growth rate comprise a somewhat similar, comparatively narrow band of
wavenumbers around αmax , with the limiting value α0/αmax =

√
2 < 2, so the first

overtones are already finitely damped. In contrast, as figure 3(c) testifies, α0/αmax → ∞
in our case. This allows the slightly damped modes, which are just to the right of
α0, to be excited to a level comparable to the unstable modes. If this is the case, the
energy balance may be compatible with the amplitudes of both the weakly unstable
and the weakly damped modes remaining finite as the control parameter approaches
its criticality value.

Speaking of the weakly-nonlinear equations which are appropriate near criticality,
it is clear that they can describe all pertinent small disturbances. In contrast, the
Stuart–Landau equation appropriate near marginality (see also, e.g., Lin 1974; Cheng
& Chang 1990; Chang et al. 1993; Scheid et al. 2005) is restricted to (small-amplitude)
disturbances whose spatial periods are close to the marginal wavelength. Therefore,
the equilibrium solutions of this equation are, typically, unstable – e.g. to disturbances
with larger spatial periods. Nevertheless, since the unstable ‘fixed points’ (in infinite-
dimensional phase space, in this case) imply that the dynamics in their vicinities is
slow, the travelling-waves equilibria may be approximately realized as quasi-stationary
states, that is wave patterns which persist for a sufficiently long time to be observable
in experiments (see Pugh & Saffman 1998).

Appendix A. Equations of the full Navier–Stokes problem
Here, we include, as a reference point, the complete formulation of the problem

(which, by using pertinent approximations, becomes significantly simplified in § 2).
The Navier–Stokes and incompressibility equations governing the fluid motion in

the two layers are (with j = 1 for the lower layer and j = 2 for the upper one)

ρ

(
∂v∗

j

∂t∗ + v∗
j ·∇∗v∗

j

)
= −∇∗p∗

j + µj ∇∗2v∗
j , ∇∗·v∗

j = 0, (A 1)

where ∇∗ = (∂/∂x∗, ∂/∂y∗), ρ is the density (of both fluids), v∗
j = (u∗

j , v
∗
j ) is the fluid

velocity with the horizontal component u∗
j and vertical component v∗

j , and p∗
j is the

pressure.
The boundary conditions at the plates are u∗

1 = 0, v∗
1 = 0 at y∗ = 0 and u∗

2 = U2,
v∗

2 = 0 at y∗ = d1 + d2, where U2 is the velocity of the upper plate. The interfacial
boundary conditions are: the velocity continuity at the interface, [v∗]21 = 0, where
[A]21 = A2 − A1 denotes the jump in A across the interface, i.e. at y∗ = h∗(x∗, t∗);
the balance of the tangential and normal stresses taking into account the jump in
the tangential stress (due to the variability of surface tension) as well as the capillary



152 D. Halpern and A. L. Frenkel

jump in the normal stress, at y∗ = h∗(x∗, t∗), are

1

1 + h∗2
x∗

[(1 − h∗2
x∗ )µ(u∗

y∗ + v∗
x∗) + 2h∗2

x∗µ(v∗
y∗ − u∗

x∗)]21 = − σ ∗
x∗

(1 + h∗2
x∗ )1/2

,

[(1 + h∗2
x∗ )p∗ − 2µ(h∗2

x∗u
∗
x∗ − h∗

x∗(u∗
y∗ + v∗

x∗) + v∗
y∗)]21 =

h∗
x∗x∗

(1 + h∗2
x∗ )1/2

σ ∗,

where σ ∗ is the surface tension (the subscripts x∗, y∗, t∗ denote the derivative with
respect to that variable); the kinematic boundary condition (the conservation of mass
condition)

∂h∗

∂t∗ +
∂

∂x∗

∫ h∗(x∗,t∗)

0

u∗ dy∗ = 0; (A 2)

and the equation for the surface concentration of the insoluble surfactant, Γ ∗(x∗, t∗),
(see a simple derivation in Halpern & Frenkel 2003):

∂(HΓ ∗)

∂t∗ +
∂

∂x∗

(
HΓ ∗u∗) = Ds

∂

∂x∗

(
1

H

∂Γ ∗

∂x∗

)
, (A 3)

where H =
√

1 + h∗2
x , and Ds is the surface molecular diffusivity of surfactant; Ds is

usually negligible and is discarded.

Appendix B. Derivation of the Stuart–Landau equation
Here, we derive a Stuart–Landau equation (see (B 18)) for the fundamental

amplitude A1(α) of (4.2) and give the expressions of other amplitudes in terms of
the fundamental one (see (B 17)).

We substitute the ansatz (4.2) into the weakly nonlinear equations (2.17) and (2.18)
augmented with the linear terms containing the speed V0, the same as in (3.3) and
(3.4), and recast into a vector form

d

dt

[
η

g

]
= L(α)

[
η

g

]
+ N, (B 1)

where N stands for the vector of nonlinear terms,

N = −
[

ηηξ + 3C(ηηξξξ )ξ − 2C(ηgξ )ξ
3C(ηηξξξ )ξ + (ηg)ξ − 2C(ηgξ )ξ + 3

2
C(ηξξξg)ξ − 2C(ggξ )ξ

]
. (B 2)

This yields the equation∑
k,n

(
d

dt
Ak(nα)

)[
1

gk(nα)

]
einαξ =

∑
k,n

λk(nα)

[
1

gk(nα)

]
Ak(nα)e

inαξ + c.c. + N, (B 3)

where both k and n run over the values {1, 2}. Truncating at the leading order, we
have

N = −iαeiαξA∗
1(α)

(
A1(2α) N1(α) + A2(2α) N2(α)

)
− 2iαei2αξA2

1(α) M + c.c., (B 4)

where

Nk(α) =

[
1 − iαC(21α2 + 4gk(2α) − 2g∗

1(α))

gk(2α) + g∗
1(α) − iαC

(
21α2 +

(
4 − 3

2
α2

)
gk(2α) − 2

(
1 − 6α2 − gk(2α)

)
g∗

1(α)

)]
(B 5)
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(for k = 1, 2) and

M =

[
1
2

− iαC
(
3α2 + 2g1(α)

)
g1(α) − iαC

(
3α2 +

(
2 + 3

2
α2

)
g1(α) + 2g2

1(α)

)] . (B 6)

The vectors Nk(α) and M can be expanded into standard basis as follows:

Nk(α) =

[
N1(k(α))

N2(k(α))

]
= ak

[
1

g1(α)

]
+ bk

[
1

g2(α)

]
, (B 7)

where

ak =
N2(k(α)) − N1(k(α))g2(α)

g1(α) − g2(α)

, bk =
N1(k(α))g1(α) − N2(k(α))

g1(α) − g2(α)

, (B 8)

and

M =

[
M1

M2

]
= e

[
1

g1(2α)

]
+ f

[
1

g2(2α)

]
, (B 9)

where

e =
M2 − M1g2(2α)

g1(2α) − g2(2α)

, f =
M1g1(2α) − M2

g1(2α) − g2(2α)

. (B 10)

So, N is expressed as a linear combination of the standard basis vectors (those
appearing in the linear terms):

N = − iαeiαξA∗
1(α)

(
a1A1(2α) + a2A2(2α)

) [
1

g1(1α)

]

− 2iαei2αξA2
1(α)

(
e

[
1

g1(2α)

]
+ f

[
1

g2(2α)

])
. (B 11)

Thus, by substituting N into (B 3) and equating the coefficients of the (linear
independent) basis vectors we obtain the following amplitude equations for the
unstable fundamental mode and the overtones:

dA1(α)

dt
=λ1(α)A1(α) − iαA∗

1(α)

(
a1A1(2α) + a2A2(2α)

)
, (B 12)

dA1(2α)

dt
=λ1(2α)A1(2α) − 2iαeA2

1(α), (B 13)

dA2(2α)

dt
=λ2(2α)A2(2α) − 2iαf A2

1(α). (B 14)

It is important to note that, as is seen from (3.13), λ1(α) is small, but γk(2α) is not small
(and γ2(α) is not small as well):

λ1(α) =O(ε), (B 15)

λk(2α) =O(1), γ2(α) = O(1). (B 16)

The overtones may feature initial fast-decaying transients which die out quickly since
(the negative) γk(2α) are O(1). Except for the short time during which these transients
decay, the time derivatives in the left-hand side of (B 13) and (B 14) can be neglected
(indeed, it will be seen that d/dt = O(ε) so that the left-hand sides are O(ε2) whereas
the right-hand sides are O(ε)), and so the overtones are slaved to the fundamental
mode:

A1(2α) =
2iαe

λ1(2α)

A2
1(α), A2(2α) =

2iαf

λ2(2α)

A2
1(α). (B 17)
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(This corresponds to the equations of the centre manifold in the leading order, e.g.,
similar to § 8.2 of Glendinning 1994.) Substituting these two expressions into (B 12)
yields the Stuart–Landau equation for the fundamental amplitude A1(α) (see, e.g.,
(49.10) of Drazin & Reid 1981):

dA1(α)

dt
= sA1(α) − 1

2
|A1(α)|2A1(α), (B 18)

where

s = λ1(α) (B 19)

and the Landau constant  is given by

 = −4α2

(
a1e

λ1(2α)

+
a2f

λ2(2α)

)
. (B 20)

Since s = O(ε) and  = O(1), the two terms in the right-hand side are of the same
order, O(ε3/2), when A1(α) = O(ε1/2). It follows that, for the left-hand side to be of
the same order as the right-hand side, it must be that d/dt = O(ε). (This is consistent
with the slow evolution on the centre manifold. In contrast, if the system is initially
off the centre manifold, it approaches the latter in fast time, as described by (B 13),
(B 14) and (B 16).)
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