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A wavy free-surface flow of a viscous film down a cylinder is considered. It is shown that if the 
cylinder radius is large, as compared to the film thickness, the long-wave perturbation approach 
yields a rather simple evolution equation. This nonlinear equation is similar to the well-known 
Benney equation of planar films, and becomes exactly the latter in the limit of infinite radius. 
Thus it is the annular-case analog-which was missing in the literature-f the Benney 
equation. It is argued that under conditions implicitly implied in their derivation, the 
Benney-type equations are not uniformly valid for large times. However, both the new and 
Benney equations are important heuristically-as sources of other, simpler, equations which, in 
certain domains of system parameters, are valid for all time. Also, the new equation of annular 
films is important as a qualitative model incorporating all significant physical factors. 

I. INTRODUCTION 

Blows of liquid lilms on solid surfaces are important in 
industry and nature, and have been drawing significant 
research interest for many years. In theoretical research, 
planar films were studied first (a recent review and further 
references can be found, e.g., in Ref. 1) . Benney’ initiated 
a long-wave perturbation approach which led to the non- 
linear equation [(9) in Ref. l] for film thickness. The equa- 
tion has the form of a power series in the perturbation 
parameter a, the ratio of the average film thickness to the 
wavelength. Usually, only the two first terms of the series 
are retained; this results in what is sometimes called the 
Benney equation. 

It contains the effects of inertia; the stabilizing action 
of surface tension is also included if the latter is sufficiently 
large (a certain Weber number, proportional to the surface 
tension constant, is assumed to be of order a-*). Modifi- 
cations which account for other factors, such as molecular 
forces and nonisothermal effects, have been obtained (e.g., 
Ref. 3 ); those have principally the same two-perturbation- 
orders structure as the paradigmatic Benney equation. One 
would expect that, for annular films, there should exist an 
analogous equation. However, no equation of this kind is 
found in the literature. 

Atherton and Homsy” and Lin and Liu’ did apply the 
long-wave approach of Benney to a film flow down a cyl- 
inder. They derived in principal the equation for a long- 
wave evolution of film thickness. However, the calculations 
are much more involved than those in the planar case (and 
were performed “with the aid of symbolic computation 
using REDUCE" in Ref. 4), and the coefficients of the re- 
sulting equation are unwieldy. 

In the present paper, I show that there is a way to 
obtain for annular films a simple analog of the Benney 
equation. To this end, one should assume the radius of the 
cylinder to be sufficiently larger than the film thickness, 
namely, of the same order of magnitude as the large axial 
wavelength, or larger. I show that this assumption, com- 
bined with the long-wave perturbation approach, leads to a 
new evolution equation which (i) is rather simple, (ii) is 

quite similar to the Benney equation, and (iii) becomes 
exactly the latter in the limit of infinite radius of the cyl- 
inder. Thus, this equation is the missing annular-film coun- 
terpart to the (planar-film) Benney equation. 

There appears to be another deficiency in the literature 
on the Benney equation which I attempt to make up here: 
I argue that the equations of this type, derived by a formal 
perturbation method, may not be uniformly valid in time. 
The reason is, roughly, that the long-wave perturbation 
parameter is based, in effect, on the wavelength of the ini- 
tial state. However, the dissipative system evolves to at- 
tracting regimes which have an intrinsic characteristic 
length scale, determined by the basic parameters. Since the 
system “forgets” the initial conditions, the initial long- 
wave parameter may become irrelevant after some tran- 
sient time. So, an uncritical acceptance of the long-wave 
equations may lead to wrong conclusions as to the long- 
time evolution of the film. 

Having said that, I will argue that there are certain 
important roles (which were mentioned in the abstract) 
for the Benney-type equations to play in film flow studies. 

The rest of the paper is structured as follows. 
In the next section, the Navier-Stokes problem is for- 

mulated. The perturbation approach to that problem yields 
the evolution equation (29) in Sec. III. [Its three- 
dimensional generalization is given by Eq. (30).] In Sec. 
IV, I discuss the relations of both Eq. (29) and Benney’s 
equation between themselves and to other evolution equa- 
tions, along with the question of large-time validity for 
each of these equations. 

The conclusions are summarized in Sec. V. 

II. NAVIER-STOKES PROBLEM 

The Navier-Stokes (NS) equations describing (for 
simplicity) an axially symmetric flow, with zero azimuthal 
velocity, of an incompressible fluid of density p (the over- 
bar marks dimensional quantities) and viscosity jI can be 
written in the following dimensionless form:48’1617 

(1) 
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V,+21uy+UV,=--Py+R-1C[r-1(N)yly+~za). (3) 
Here, the average film thickness he is the unit of length, 
e.g., for the downward coordinate Z and the radial one 
7=&g, where 6 is the radius of the cylinder y =O. The 
interface velocity 0=$@(2Y) of the (Nusselt’s unstable 
equilibrium) flow of a film-which has a constant thick- 
ness Fe and kinematic viscosity ;i;=ji/jGdown a vertical 
pZane under the action of gravity (acceleration @  is the 
unit for the z component of the velocity, U, and the y - - 
component, v. Other units are based on Lo and U: hdo for 
time, t; pD2 for the pressure p; and jio2& for the surface 
tension y. In (l)-(3), the subscripts denote the corre- 
sponding partial derivatives; and R is the Reynolds num- 
ber, 

R=t35,/C [-f&/(23)]. (4) 

The boundary conditions are as follows. The no-slip 
conditions at the solid cylinder surface are 

u=O and v=O (y=O). (5) 
The stress balance conditions at the free surface y=h(z,t) 
are 

(l-h5)(u,+v,)+2h,(u,--u,)=O, (6) 

p+R-‘(u,+v,)h,-2R-‘v,-ty( l+h,2)-1’2 

x[(l+hf)-‘h,=-r-*1=0, (7) 
(the pressure of the ambient gas is neglected for simplic- 
ity). 

Finally, the kinematic condition at the free surface is 

h,+uh,-v=O (y=h). (8) 

Ill. LONG-WAVE LARGE-RADIUS PERTURBATION 
THEORY 

Consider the case of a “large-radius” cylinder: 6) 1. 
According to the linear theory (e.g., Ref. 5), the surface 
tension leads to capillary instability with its maximum at 
the length scales of order b. In the nonlinear long-wave 
theory, we assume that waves have (presumably, because 
the initial conditions are chosen to be such) a large length- 
scale I: 

a*--I-‘===a< 1. (9) 
We rescale the axial coordinate and time: c=z/l and r= t/ 
I, so that 

apaa4, a,=aa,, 

and then a,- 1, d,- 1, i$- 1. 
Let p=I/b, so that b=ams’fl-‘; then 

r=b+y=amlP-‘+y; 

(10) 

r-l= (b+y)-‘=a@‘) -a2(f12y) +O(a3> (11) 
(where, for the last equality, the binomial theorem was 
used). 

We will substitute the perturbation expansions in pow- 
ers of a, such as 

u=u”+au’+~** (12) 

[where u”=uo(&,r), etc.; the superscript i marks the co- 
efficient of the power a’], and also relations ( 10) and ( 1 1 >, 
into Eqs. (l)-(8), so that the left-hand sides of (l)-( 8) 
become power series in a. 

From (l), u,,-a~+, * therefore, the leading order of v is 
O(a), so that ZI can be written as follows: 

u=a(uO+v’a’+~-~). (13) 

We assume y= ya2 - 1 (and R - 1); then, differentiat- 
ing (7) along the z direction, we obtain 

Pg=P$+P;rx+*-* t (14) 

where 

p”s= -%q~ss+$hs). (15) 

The axial NS equation (2) with substitutions (12)-( 14) 
becomes 

a0(u&+2)+a’[ -R(u~+uOu~+vou~+p$ 

+/q+ z$J + * * - =o. (16) 

The coefficient of ai must be zero, for each i. In par- 
ticular, for i=O, 

u;y= -2. (17) 

The boundary conditions are given by the leading orders of 
(5) and (6): 

u”=O (y=O); u;=O (y=h). (18) 

The solution of this simple problem, ( 17) and ( 18), is 

a0 = -y2 + 2hy. (19) 

The equation for u” follows from the continuity equation 
( 1) in the leading order, O(a): 

+=- -UO C’ = - 2hgy, (20) 

where the last equality follows from ( 19). With the bound- 
ary condition (5), v”=O at y=O, the solution is 

v”= -hp2. (21) 

The substitution of ( 19) and (2 1) withy= h into the lead- 
ing order a of (8) written as 

a(h7+u0hg-u0)+a2(u1h~--d)+***=O (22) 

yields 

h,+ 2h2hg=0, (23) 

the leading-order evolution equation for the film thickness 
h (&r) . To find the coefficient of the next-order correction 
in (22), u’he--d, we need the expressions of U’ and t? in 
terms of h. These are found from the following coefficient 
equations. The axial NS equation (2) in order a gives [see 
(1611 
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=2Rhhg2+2y(&2Rh2hg) +R&2hB, (24) 

where the last equality follows from the expressions ( 19) 
and (21) for u” and v”. 

The boundary conditions follow from (5) and (6) in 
order a: 

u’=O (y=O); u;=O (y=h). 

As a result, 

(24’) 

u’=6-1Rhh~4+3-*(&2Rh2hg)y3+(2-1Rp;-h~)y2 

+ [R(4h4hc/3-hp;) +h*P]y. (25) 

This solution is readily verified by its direct substitution 
into the problem equations (24) and (24’). Similarly, the 
continuity equation ( 1)) 

a(u~+u$+a2(u~+j?uo+u~)+***=0, 

gives, in the order a’, the equation for r?, 

+ -fig- u1 6 (26) 

The solution which satisfies the boundary condition follow- 
ing from (5), 

?I’=0 (y=O), (27) 

is 

x (Rp;-4hfi)d3+ [6-‘R(3hp0,-4h4h,),-hh&]y’, 
(28) 

which is not difficult to verify by direct substitution of 
(28), (21), and (25) into the problem equations (26) and 
(27). 

Finally, by putting y=h in (25) and (28), substituting 
those expressions into (22)) and expressing pz by ( 15)) we 
find the evolution equation for h (C,T): 

I’-3 
3 Ryh ($hg+hccg) 

8 1 
+$@hg+@h4 . ..=o . 

Similarly, an equation can be obtained for the most gen- 
eral, nonaxisymmetric, disturbance which may depend on 
the azimuthal coordinate 8 in addition to the axial one, 5: 

+f %‘V[h3V(B2h+V2h)] (30) 

where k=-iRy=$Rxa”, a modified Weber number; 
V=,?$+86d~; z^ and 0 are unit vectors in the correspond- 
ing directions; and c=Sfi-‘l3, a resealed azimuthal coor- 
dinate, which implies that the axial wavelength is 6 times 
greater than the azimuthal one. 

Clearly, for a e-independent disturbance, at=O, 
V=&3, and, hence, (30) returns to the form (29). 

IW. DISCUSSION 

If the cylinder radius b tends to infinity, /3 goes to zero. 
Equation (29) with p=O is 

A Rh6hp+i F?h3hgc =o, (31) 
5 

where ti/=lRiy= Wa2 and W=&Ry=y/(&&, the We- 
ber number. 

Equation (31) pertains to the flow down a vertical 
plane. The general equation for the flow down a plane 
inclined at an angle 9 to horizontal was derived* by Ben- 
ney’s long-wave approach and is called the Benney equa- 
tion. (Numerical simulations of this equation were re- 
ported, e.g., in Refs. 9-l 1.) In Ref. 1, it is written [IQ. (9) 
there] in the form which includes terms of order a2 as well: 

+a2[~(h>h~~+~(h>h~~~~+~~~lg+~(a3)=0 (32) 
(where we omitted some terms of order a” which do not 
play any role below). The coefficients are given in Ref. 1 as 

A(h) =2h2 (33) 

and, if specified for the case of vertical plane (9=7r/2, i.e., 
cot rp=o>, 

8 
B(h) =E Rh6, C(h) =i a2Wh3, (34) 

so that truncation of (32) at the order a gives (3 1) . 
Equation (3 1) is sometimes used to study waves of 

large amplitude, (h - 1) - I (e.g., Ref. 11) . Since it incor- 
porates the physically relevant etfects of both inertia and 
surface tension, (3 1) may be a qualitatively good model for 
the film flow (indeed, some of its consequences compare 
favorably with experiments; however, some other predic- 
tions fail’*). 

But the question of whether there is a sound asymp- 
totic basis to expect that, for the case (h - 1) - 1, (3 1) can 
provide quantitatively good approximation uniformly in 
time needs to be discussed. Indeed, (3 1) lumps together 
terms of different asymptotic orders. The leading order 
equation is just 

h,+A(h)hc=O. (35) 

It is well known that this equation describes steepening of 
the forward faces of the waveform which leads to eventual 
breaking of the waves after a finite time. To stop this pro- 
cess, some of the order-a terms must become comparable 
to the leading order terms; otherwise they would give only 
small corrections to the leading order breaking solution, 
and thus could not prevent the wave breaking (whereas, in 
reality-as evidenced by numerical experients”-the 
steepening of the Benney waves comes to an end, and they 
never break). The B and C terms of (32) can become 
large, e.g., because of effective scale contraction due to the 
steepening, so that 

(36) 
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in (32). Among the O(a) terms, the B term of (32) can- 
not be neglected, since the only other one is the C term 
(due to the surface tension) which would cause the wave 
amplitude to decay. Hence, to have a wave which persists 
in time, the B term should be comparable to the leading- 
order A term, i.e., (B term/A term) 2 1. The estimate of 
this ratio is, by using (33), (34), and (36), 

B term aRh6hd 
1 ZG-- 

A term h2ha 
= Rh4aa (37) 

[the 6 derivatives are estimated as h,-dh, etc.; see (36) 
and recall that (h- 1) - 11. 

However, by using the expressions’ for the O(a*) co- 
efficients E and F of (32), namely, 

E(h) =; R2h1’+2h4; F(h) =g a*R Wh7, (38) 

we obtain the following estimate: 

E term a2dR2h1’h 
B term’-- 

- Rh4aoZ 1, (39) 

where the last inequality follows from (37). Thus there are 
terms of order a2 in (32) which cannot be neglected. The 
same applies to O(a3) terms, etc. So, the perturbation the- 
ory breaks down. There is no single equation which can 
approximate the evolution uniformly in time. The leading- 
order equation (35) is good for a limited time, but after it 
breaks down, turning as a remedy to Eq. (31) is not jus- 
tified. [Of course, before that breakdown, there may be a 
limited interval of time during which (35) yields a some- 
what better approximation thati ( 3 1) .] Equation (3 1) may 
still be a qualitatively reasonable model, even for large 
times, since it captures all physically important factors, 
such as surface tension and inertia; but one should not 
expect its solutions to be quantitatively good time-uniform 
approximations to the exact solutions of the film problem. 

It is easy to see that the same arguments hold for the 
general Benney equation [ (9) in Ref. 11, that is for the case 
of a nonvertical plane, cot p#O. Similar conclusions are 
reached for the cylinder case, Eq. (29). All these equations 
are not uniformly valid in time in their original form im- 
plying large amplitude waves, (h - 1) - 1. (Another sce- 
nario in which the Benney equation should become invalid 
after a finite time was indicated in Refs. 11 and 10: For 
some initial conditions, the solution amplitudes can grow 
to infinity, and the underlying assumption of small slope is 
eventually violated. However, it appears that the equation 
becomes invalid even earlier-via the steepening mecha- 
nism suggested above.) However, from these Benney-type 
equations others can be obtained which are likely to be 
valid for all time. For example, if the wave amplitude is of 
order a, that is 

h--l=ar], (q-l), (40) 

(31) becomes an equation for q via the substitution h= 1 
+av. In a moving reference frame-changing c to x= 5 
-27, so that ~r,-+(~,--2~X) and ~~=~X-Eq. (31) be- 
comes 

q,+4a*qq,+a 
8 21 

15 Ravx+z Waqxxx =O. 
x 

After resealing the time variable, T = CYY~, all the terms con- 
tain the factor a2, and, hence (as was first derived from the 
Benney equation in Ref. 13)) 

8 2- 
7,~+477rlx+i-~ Rvxx+~ Wrlxxxx=O+ (41) 

The above change of reference frame is not necessary 
for the derivation of (41). If we remain in the original 
frame, there is a “fast-time” change of q at a fixed location, 
due to the uniform translation of the wave pattern past the 
observer. So, r] should depend both on the fast time 7 and 
on the “slow time” T=ar, so that &-+&+a+. Then the 
leading order of (31) is O(a): ay,+2ayg=0. The equa- 
tion 77.,+2r/5=0, is, as was mentioned above, of purely 
kinematic character: it describes the uniform translation of 
the waveform..This contrasts with the leading order (35) 
of the large-amplitude case, which describes steepening 
and breaking of waves. In order a2, we obtain (41), which 
describes the intrinsic dynamics of the wave pattern. The 
“benign” leading-order behavior in the small amplitude 
case is the necess&y basis for the time uniformity of the 
dynamical description ( 4 1) . 

Equation (41) is, so to say, “asymptotically consis- 
tent:” it does not lhmp together terms of different asymp- 
totic orders. It is well known from many computational 
experiments (e.g., Ref. 14) that solutions of the 
KuramotoSivashinsky type equation (41) on extended 
spatial intervals are attracted to regimes of chaotic waves 
whose characteristic amplitudes, as well as lengt_h and time 
scales, are of magnitude-order one if R - 1 and W- 1. This 
estimate of scales also follows from the pairwise balance of 
terms in (41); a simple dynamical mechanism enforcing 
that balance was suggested in Ref. 15. The estimate q- 1 
for solutions of (41) is in accordance with the small- 
amplitude assumption (40). 

Both the numerical experimentsI and the theoretical 
arguments15 show that, starting from an arbitrary small- 
amplitude disturbance whose length scale may be large or 
small, the film evolves to a state withsharacteristic wave- 
lengths which (assuming R 5 1 and WZ 1) are large (as 
compared to the film thickness) by the factor of order 
W ’/2R - l/2,1 and whose amplitudes are small, 
- R3’* W- ’ 4;. Equation (41) should give a quantitatively 
good approximation for the low-amplitude evolution of the 
film: It is easy to check that, with the above estimates of 
characteristic quantities, the terms of the full Navier- 
Stokes problem which are effectively discarded [in reduc- 
ing the evolution description to the single equation (41)] 
are estimated to be much smaller than the terms retained. 
This is not so, for example, for larger vahies of R, when the 
amplitude is estimated to be of order 1, so that (40), and 
therefore (41) , is no longer valid. But in those cases (3 1) 
is not good either, by the same reasoning: the NS terms 
which have to be left out in its derivation are not small. 
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Returning to the annular tlow, Eqs. (29) or (30), an h,+2h2h,+fi(Rh6h,+$Wh,),==0. In this form, the fact 
asymptotically consistent equation for small-amplitude re- that the terms in parentheses are-because &-aX 1, 
gimes is obtained in exact analogy with deducing (41) &-a, etc.-of a higher asymptotic order than the other 
from (31). That yields terms is somewhat less obvious, but true nevertheless.] 

Since (29) and (31) are very similar, all the conclu- 
sions obtained for (3 1 )-such as the existence of solitary 
waves and self-similar solutions which reach singularity in 
a finite time (see Refs. 10 and 11 )-should hold for Eq. 
(29). However, since both (29) and (31) are only model 
equations, their consequences should be approached with 
caution as far as their relevancy to the physical reality is 
concerned. 

2 
?1rf~B~~+4917x+~R?)u,+~~*V”?+~Vlq=O. 

(42) 
In Ref. 6, this equation was derived directly from NS, 
as a leading-order coefficient equation in a formal 
single-parameter perturbation- scheme, by putting 
a=(2W/R)-“* (note that W=R/2 as a result) and 
looking for solutions in the form of power series in a; in 
particular, h=l+aq+*.* . [Note that some signs in Eq. 
(35) of Ref. 6 are opposite to those in (42), due to the 
different choice of the positive direction on the vertical 
axis; the signs in (42) agree with Ref. 16.1 

But, in contrast to the planar case, a time-uniform 
equation describing large waves, (h - 1) - 1, can be de- 
duced from the annular-film equation (29). Namely, let R 
and 7 be such that 

aRy=S- 1 (43) 

(which means W-a-‘, rather than the usual W-a -‘>. 
Then the first term in brackets of (29) becomes of order 
one (assuming h - 1, hc- 1, etc.) and the leading-order 
equation is (with p=l, i.e., a=b-‘) 

h,+2h2h,+~~[h3(h,+h,)]c;=0. (44) 

This equation was derived in Ref. .7 directly from the NS 
problem, by using a multiparameter perturbation 
approach” that yields simultaneously a domain in the pa- 
rameter space for the validity of the theory: If S has the 
order of magnitude one, then a = b- ’ ( 1 and Ra( 1 are the 
conditions of applicability, for the case under consider- 
ation. Some scaling dependencies7 which follow from (44) 
are in excellent agreement with experiment.18 

Equation (44) is the only known time-uniformI equa- 
tion for large-amplitude waves on films with nonzero av- 
erage flow (for films with no mean transport, there are 
evolution equations which can handle large amplitudes, 
e.g., Ref. 20 for the planar case and Ref. 21 for the cylin- 
drical one). The reason for this unique opportunity in the 
cylindrical case is the fact that surface tension can provide, 
along with the usual stabilizing effect due to the longitudi- 
nal curvature, a destabilizing action, induced by the trans- 
verse curvature which is absent in the planar case. There- 
fore, there is no need for a large inertia (to grow the large 
waves), which would break up the perturbation theory 
responsible for reducing the problem to a single evolution 
equation. [For numerical simulations of (44) which reveal 
some interesting evolution processes, see Ref. 19.1 

Although the “parental” equation (29) itself is not 
strictly consistent, it can be studied as a model, similar to 
the investigation” of its planar analog, the Benney equa- 
tion (3 1) . [Note that (3 1 )-in a slightly generalized ver- 
sion that includes nonvertical plane case-was written in 
Ref. 11 in the form which is obtained by returning to 
our original unscaled quantities, t, z, and W: 

V. CONCLUDING REMARKS 

The reason why previous attempts to apply the long- 
wave perturbation method to annular film flows did not 
produce a manageable evolution equation [which is (29) 
above] is just the fact that the assumption of large radius 
was not utilized. 

Although both Eq. (29) and its well-known inclined- 
plane analogue, the Benney equation (3 1) , lump together 
terms of different asymptotic orders, and therefore, typi- 
cally, either retain terms which can be neglected or neglect 
terms which eventually are not small, they are useful heu- 
ristically, as generators of consistent equations which may 
be uniformly valid in time. One of the latter describes 
large-amplitude regimes for the annular flow, whereas such 
waves in inclined-plane film flows are not reducible to any 
single evolution equation. In the parametric domains 
where only small waves develop, such time uniform 
equations-which can be formally obtained from the 
Benney-type equations-are of the Kuramoto-Sivashinsky 
type. 

Since the new equation (29) includes the relevant 
physical factors, it can be studied as a model, on a par with 
its planar counterpart (3 1)) and similar results-solitary 
waves, explosive self-similar solutions, etc.-can be ob- 
tained. However, the model character of these Benney-type 
equations should be remembered in comparing their results 
with experiments. 
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