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Abstract

Flow of an incompressible Newtonian �lm down an inclined plane is considered� A
multiparametric perturbation approach yields the most general leading�order equation
for �lm thickness which can quantitatively approximate �lm evolution for all time� The
theory yields explicit expressions for velocities and pressure in terms of �lm thickness�
Conditions of �i� local �in time� and �ii� global validity of the theory are obtained� The
evolution equation contains both dissipative and dispersive terms� It is valid for small�
amplitude wave regimes� Numerical simulations with periodic boundary conditions
show transient spatial patterns in qualitative agreement with recent experiments� For
parametric conditions with large dispersion� highly ordered unusual �non�periodic�
spatial patterns are observed at large times� near dynamical system attractors�

� Introduction

Liquid �lms �owing on solid surfaces are readily found in nature and industry� in both
single� and multi�uid settings� an example of a multi�uid �lm system is the so�called core�
annular �ow �see e�g� 	
��
� In simple planar or cylindrical geometries one easily �nds
stationary solutions �of the Navier�Stokes equations
 which are uniform along the �lm�
More often than not� however� these �at��lm ��Nusselt�s�
 solutions are unstable� The
resulting wavy �lms increasingly fascinated researchers over the course of this century �see
e�g� 	�� 
�� ��� ��� ��� ��� for a considerable history of �lm studies
� and signi�cant progress
has been made� However� the strongly nonlinear dynamics of �lm waves involves many
active degrees of freedom� and� in our opinion� we are still far from fully understanding the
complex evolution of these waves�

Recently� Gollub and his co�workers 	��� ��� ��� experimentally studied intriguing
��D wave patterns in a �lm �owing down an inclined plane� In general� the phenomenon
of pattern formation in nonequilibrium dissipative systems is currently a topic of active
experimental and theoretical research �see 	�� for a recent progress review
� A common
feature of spatial patterns studied up to now in �uid�dynamical experiments� including those
of Liu et al� 	��� on �lm waves�as well as in solid state physics� nonlinear optics� chemistry�
and biology�is that they are almost periodic� at least locally� One wonders if such must
always be the case� Our recent theoretical and computational research on �lms �owing
down inclined planes reported here indicates an answer to this question� Highly ordered
patterns� but of a character quite di�erent from a simple periodicity� can spontaneously
emerge in some driven dissipative systems�

The fundamental description of wavy �lm �ows is given� of course� by the Navier�
Stokes �NS
 equations� However� that system�of four coupled partial di�erential equations
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�PDEs
� additionally complicated by boundary conditions �BCs
 at a moving boundary
whose PDE itself involves the unknown velocity �elds�is too di�cult even for the most
powerful modern computers� Fortunately� for certain domains in the space of parameters�
simpli�ed approximate descriptions are possible� In the most favorable cases� such a
description would hinge on a single PDE� governing the evolution of some unknown quantity
of the �lm�the quantity being the �lm thickness in all examples known to us� In the next
section� we sketch such a theory for an inclined �lm� it leads to a dissipative�dispersive
PDE for the �lm thickness� We argue that it is the most general leading�order equation of
this kind which can be systematically derived from the full NS problem by using only well�
controlled approximations �however� non�leading dissipative terms can be important when
dispersion is large�as in 	��� 
��
� As a result� one simultaneously obtains the conditions
for the theory to give a good approximation to the exact dynamics� We introduce the notion
of local�validity conditions� These involve the characteristic lengthscale and amplitude of the
current deviation of the surface from its average� Nusselt�s position� Those characteristic
quantities can change with time� and the local conditions can break down as a result� In
such a case� the evolution equation �EE
 based theory provides a good approximation for
only a limited interval of time� We argue that such is the case for the Benney equation
widely used to describe large�amplitude waves on inclined �lms �and that in fact no EE
can do a better job
� It is better� of course� if an approximation is good uniformly for all
time� For this� certain global�validity conditions should be satis�ed which� naturally� involve
only time�independent� basic parameters�such as the Reynolds number� Weber number�
etc� We obtain the most general theory of this type involving an evolution equation for
�lm thickness� Where it is valid� it leads to small�amplitude waves� in accordance with
the above remarks� The approach we use to obtain the outlined theory�which includes
the evolution PDE� explicit expressions for velocities and pressure in terms of the PDE
solutions� and the local� and global�validity conditions�is a further development of the
multiparametric perturbation �MP
 approach which has been suggested and used in our
earlier papers 	��� ��� ��� ����

In section � we report some preliminary results of numerical simulations of our
dissipative�dispersive evolution PDE� They have revealed unusual� highly�ordered but
nonperiodic patterns on attractors of large�dispersion systems� For small dispersion� we
observe qualitative agreement with transient patterns discovered in physical experiments
	���� This is somewhat surprising because their values of basic parameters are outside of
the domain of validity of our theory �although comparatively close to it
�

Summary and some conclusions are presented in the last section�

� Theory hinged on a �lm thickness evolution equation

In this section we sketch a perturbation theory which includes an evolution PDE for �lm
thickness� explicit expressions for velocities and pressures in terms of the �lm thickness�
and conditions of validity for such a convenient approximation of the true evolution of the
�lm� More complete derivations will be published elsewhere 	
���

��� Large�amplitude waves and local�validity conditions

Consider a layer �of an average thickness h�� the overbar here and below indicates a
dimensional quantity
 of an incompressible Newtonian liquid of a density �� viscosity ��
and surface tension � �owing under the action of gravity �whose acceleration is g 
 down an
inclined solid plane whose angle with the horizontal is �� Nusselt�s velocity �U at the interface



Spatiotemporal Patterns in a ��D Film Flow �

is �U � �g�h��sin���
��
 �where �� � �� � is the kinematic viscosity
� We nondimensionalize
all quantities with units based on �� h�� and �U� Then only three independent dimensionless
system parameters appear in the dimensionless equations and boundary conditions� e�g� the
angle �	 the Reynolds number R � �h� �U���� and the Weber number W � �R�
� The x axis
of our system of coordinates is normal to the solid plane and directed away from it �and
into the �lm
� the y axis is in a spanwise direction� and the z axis is directed streamwise�
The x� y� and z components of velocity are denoted� respectively� u� v� and w�

Let w� be the Nusselt velocity for an imaginary �lm of constant thickness h which is
equal to the local thickness h�y	 z	 t
 of the real �lm �which is in line with experiments
	��
� w� � 
hx � x�� Similarly� the locally Nusselt pressure p� is by de�nition p� �

�h� x
 cot ��R� 	Note that w� and p� depend on y� z� and t �through h�y	 z	 t

 as well as
on x�� The reference normal component of velocity u� is chosen to satisfy incompressibility�
i�e�� it is de�ned as the solution of u�x � �w�z �the subscripts x� y� z� and t denote the
corresponding partial derivatives
� with the no�slip boundary condition u� � � at x � ��
which solution clearly is u� � �x�hz� Finally� our spanwise reference velocity is identically
equal to zero� The NS problem �see Appendix A
 becomes an exact one for a new set
of unknowns�h� u�� v� w�� and p��by the substitution u � u� � u�� w � w� � w��
and p � p� � p� �the remaining unknown v is not changed
� For example� the kinematic
boundary condition 	Eq� �
�
 in Appendix A �V � �
� at the free surface x � h becomes

ht � vhy � �w� � w�
hz � u� � u� � ����


Actually� analyzing derivations of known EEs� it is easy to see that these evolution equations
always come from such a kinematic condition� Namely� the NS equations are simpli�ed by
discarding some terms� to become essentially ordinary di�erential equations �ODEs
 for
velocities and pressure as functions of x 	with other independent variables entering as
parameters only� through h�y	 z	 t
�� Having solved these simple �but nonhomogeneous

ODEs with constant coe�cients� one substitutes those solutions for velocities in terms of
h into the kinematic condition� This yields a closed PDE for h� the evolution equation� In
our derivation� we follow this prescription as well� but we take care to discard only those
terms in the NS equations which must be dropped if one is to obtain the solvable ODEs� In
this way� one �rst �nds p� from the x�NS equation� with the BC coming from the normal�
stress balance condition at the free surface �for simplicity� the pressure of the ambient gas is
neglected
� Clearly� in this problem for p�	 all terms containing one or more of the unknowns
u�� v� and w� need to be discarded� Next� the y�NS equation is recast into an ODE for v�
Here� only terms containing u� or�and w� must be discarded� the p��term is retained as it
is now a known expression in terms of h� However� all terms containing v� except for the
viscous one with vxx	 are to be discarded as well�otherwise we will not have a solvable
ODE in x� It turns out that this requirement automatically eliminates all terms with u�
and w� as well� If we denote by A the characteristic amplitude of the surface deviation

 � h� �� and let T � Y � and Z be� respectively� the characteristic time�� y�� and z�scales�
then� for example� the condition that the neglected viscous terms be smaller than the ones
retained� after estimating these quantities in terms of the characteristic scales� yields the
requirement �� �A
��L� � � 	where by de�nition L �min�Y	Z
�� Thus� as a consequence
of our �derivability� principle� we have obtained the small�slope condition�which usually
is rather postulated in the �lubrication� or �long�wave� derivations� In obtaining this
condition� we have used the estimates of the derivatives� For example� for the x�derivatives�
we have ���x � �����A
� in the sense that ���x � � if A � � or A� �� and ���x � ��A
if A � � �since h � A for A � � and the velocities change from being zero at x � � to
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their full magnitudes at x � h� hence� the characteristic lengthscale of change is h� which is
� A
� Also� ���t � ��T � ����y� � ��Y �� ����y�z � ��Y Z� etc� Similar to the small slope
condition above� �R�T 
�� � A
� � � follows� etc� In fact� one can estimate the velocities
even before solving the equations� for example� one �nds

v � max

�
�� �A
�A

ZY
	
WA�� �A
�

Y Z�
	
WA�� �A
�

Y �
	
cot �A�� �A
�

Y

�
�

Substituting such estimates into inequalities demanding the smallness of terms which must
be discarded� one �nally arrives at the set of independent conditions for the derivation to
be justi�ed� These validity conditions can be combined as follows�

max

�
�� �A
W

L�
	
�� �A
 cot �

L
	
�� �A
�R

L
	
�� �A
�

L�

�
� �	�



where we have assumed� for simplicity� that either Y � Z or Y � Z�which so far has been
the case in all experiments� 	All these conditions can be obtained e�g� already from the
requirement of negligibility of the term containing u�z in BC for w�� Eq� �
�
 in Appendix
A�� Due to these conditions� even some terms which can be retained in the equations�and
handled� in principle� without any problem�are shown to be actually negligible� some other
terms are estimated to lead to a negligible contribution into the �nal evolution equation
and therefore can be discarded as well� As a result� one can see that the expression for p�
is in fact the solution of the problem 	see Eq� ���
 and �
�
 of Appendix A�

p�x � 	u�xx�R ��� 
hz�R	

p� �
h

u�x�R � �r�h �

i
� �hhz�R� �r�h �x � h
	

that is

p� � �
�x� h
hz�R� �r�h��


�here r� � ����y� � ����z�
� Note that this pressure contains a viscous contribution
in addition to the usual surface�tension part �and the reference pressure p� is of a purely
hydrostatic origin
�

The equation for v is� in the simpli�ed form� ���R
vxx � p�y � p�y� The boundary
conditions are v � � at x � � and� from a tangential�stress balance 	see Eq� ���
 in
Appendix A�� vx � �u�y � w�yhz � 
u�xhy at x � h� The solution of this problem for v is
the expression in terms of h given by Eq� �
�
 in Appendix B� The equation for w� is the
�simpli�ed
 z�NS equation�

w�xx � Ru�w�x � w�Rw�z � 
Rw�z �R�p�z � p�z
� w�yy � w�zz �Rw�t�

�Note that we use the system of coordinates of a moving reference frame� whose �z�
velocity
with respect to the solid plane is V � 
�that is the same as the well�known phase velocity of
the in�nitesimal waves� Velocities however are those measured in the laboratory frame�
 We
also have the boundary conditions w� � � at x � � and� from a tangential�stress balance
equation 	see Eq� �
�
 in Appendix A� at x � h� w�x � �u�z�
u�xhz�w�yhy�
w�zhz� The
solution is Eq� �
 
 of Appendix B� Next� the equation for u� comes from the continuity
equation� u�x � �vy � w�z � where v and w� are already known 	see �
�
 and �
 
 in
Appendix B�� and the no�slip BC requires that u� � � at x � �� The solution is Eq� �
�




Spatiotemporal Patterns in a ��D Film Flow  

in Appendix B� Substituting the expressions �
�
� �
 
� and �
�
 for velocities in terms of
h �taken at x � h
 into the kinematic condition ��
� we arrive at the EE

ht � R

�

�h�
tz � 
�h� � �
hz �R

�
 

�
h�hz � �

��
h�hz

�
z

��


�


�
r �

h
h��cot � �Wr�
rh

i
� 
h�r�hz � ��

�A one�dimensional version of this equation�which also lacked the last� odd�derivative
term�appeared before� e�g� in 	���� Also� we have omitted other dispersive terms which
are negligible in the limit of small amplitudes� see Eq� � 
 below�
 The solutions of this
equation give a good approximation to the true evolution of the thickness h�for some time�
at least�as long as the conditions �

 are satis�ed�

Using those conditions along with the estimates of all the members of the EE ��
 in
terms of the current amplitude A� the �current
 lengthscale L� and the basic parameters� it
is easy to see that if A is not small� the equation is written as simply ht � 
�h� � �
hz � �
�or just ht � 
h�hz � � in the laboratory reference frame
� all other terms of the EE ��

turn out to be much smaller than the remaining two� The solutions of the last equation
are well known to exhibit steepening of the wavefronts up to a breakdown in a �nite time�
It follows that the EE ��
 cannot be valid globally� i�e� for all time� But this EE is in
fact equivalent to the �widely used
 Benney equation� The latter follows from the former
�in the laboratory reference frame and with the dispersion term omitted
 if one substitutes
the expression �
h�hz instead of ht �the �trade of time� for space�derivative� of 	
�
 in
the second term of ��
� Thus� the Benney equation can approximate the large�amplitude
waves at best for a �nite time�a fact that was discussed in detail in 	���� As in the latter
paper� we again arrive at the conclusion that a �lm thickness EE which would provide a
good time�uniform approximation to large�amplitude waves �on �lms �owing down inclined
planes
 does not exist �whereas for �lms �owing down cylinders such an equation was given
in 	���
�

The two equations� ��
 and Benney one� are however not obliged to be equivalent when
the conditions �

 break down� and there are indications that our equation has a chance to
avoid the explosive solutions �see e�g� 	
�� ��� ���
 which mar the Benney equation� Indeed�
it is the term with the highest power of h �in fact� h�
 in its coe�cient which causes the
explosion in the Benney equation� but our h��term enters with the opposite sign� Thus�
although neither of the two equations is capable of a quantitatively good description of the
large�time behavior� the EE ��
 might be a better choice to be used as a qualitative model
for large�amplitude waves� This possibility makes the equation worthwhile of a further
investigation �which we have not attempted as yet
�

��� General evolution PDE� global�validity conditions� and MP approach

At small amplitudes� writing h � � � 
� �where 
 � A � �
� we arrive from the large�
amplitude evolution equation ��
 at the EE for small�amplitude waves�


t � �

z �



�
�
zz � 


�
cot �
yy �




�
Wr�
 � 
r�
z � �	� 


where by de�nition � � ��R� � cot �
� The linear stability analysis �see below
 shows
that one needs � 
 ��which condition we assume ful�lled from now on�to have an
instability and thus the possibility of an interesting nonlinear behavior� It follows that
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R 
 � ��
 cot � 
 cot �� We use this inequality together with A � � to transform the
general conditions �

 and obtain the local�validity conditions for the small�amplitude
EE � 
�

max
�
W�L�	 R�L	 ��L�	 A

�
� ����


One can see from our derivation of the EE � 
 that the third� destabilizing term
originates from the inertia terms of the NS equations� The �stabilizing
 fourth and �fth
terms are due respectively to hydrostatic and capillary �i�e� surface�tension
 parts of the
pressure� Finally� the last� odd�derivative term is due to the viscous part of the pressure�
This term is purely dispersive� it does not lead to either growth or decay of the amplitude
of surface deviation 
� Such a term also appeared in the EE obtained by Topper and
Kawahara 	��� for an almost vertical plane �naturally� the hydrostatic term was absent in
that equation
� they used the small angle of the plane with the vertical as their �single

perturbation parameter� Our derivation shows their assumption to be unnecessary� For any
inclination � �and any value of W 
� if R is close to Rc �  cot ����so that � is su�ciently
small�then the equation � 
 is valid� and its dispersive term is not small� simultaneously�
the hydrostatic term can be large as well �but Y � Z
� Without the dispersive term�
the equation of Topper and Kawahara becomes the one obtained by Nepomnyashchy 	�
��
whose one�dimensional version is the Kuramoto�Sivashinsky equation 	� � ���� All of these
equations are thus limiting cases of our EE � 
�

Due to the dissipativeness of the EE � 
� the system evolves towards an attractor and
thus essentially forgets its initial conditions� On the attractor� there can be �uctuations�
but no systematic change in time� Then� following the ideas of our earlier papers 	�� ����
the destabilizing inertia term should be of the same order of magnitude as the stabilizing�
capillary one� Hence� the �dimensionless
 characteristic lengthscale at large times La is
estimated to be

La � �W��
��� �

Similarly� the asymptotic magnitude of the characteristic amplitude Aa is determined by
the balance between the nonlinear �convective� term and either the dispersive term or the
capillary one �whichever is larger
� Aa � max�W�L�

a	 ��L�
a
� Using these estimates� the

condition ��
 can be written as max�W�L�
a	 R�La	 ��L�

a
� �� Noting that W�L�
a � ��La

and R � � ��
�� � cot �
 
 �� we �nally can write this as max
�
R�La	 L

��
a

� � � � Thus
the validity conditions are

� � ��L�
a � � and � � R�La � ����


These conditions involve only the basic �time�independent
 parameters of the �ow� If the
basic parameters satisfy these conditions� the EE � 
 is valid �yields a good approximation

for all time� Hence� these conditions may be termed the global�validity conditions�

We can transform Eq� � 
 to a �canonical � form!which would contain a minimum
of �tunable� constants�by rescaling 
 � N e
� z � Laez� y � Laey� and t � Taet� We take
N � W���L�
 and Ta � �W�
��� Dropping the tildes in the notations of variables� the
resulting canonical form of the small�amplitude evolution equation is


t � 

z � 
zz � �
yy �r�
 � �r�
z � �	��


where � � cot ��� and � � ��
p
W��

For a small perturbation in the form of a normal mode� 
 � exp�st� i�t
 exp i�jy � kz
	
one readily �nds�from the linearized version of Eq� ��
�the growth rate s� s �
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�� �j
� � �j
� �
h
�� 
 �j
�

i
k� � k�� The streamwise wavenumber kmax corresponding to

the maximum growth rate �at �xed j
 is obtained from �s��k� � � � it is k�max � ��
� j��
It follows that the maximum growth rate smax��� j
 is

smax � ���� j��� � �
���


Thus� smax is a linearly decreasing function of � for every �xed j� While the scope of linear
stability theory is limited� it is nevertheless helpful in interpreting some of the results of
our numerical simulations of EE ��
� as will be seen below�

The way we have derived the above theory is in fact a re�nement of the less�formal
version of the multiparametric perturbation approach used in 	�� ��� ��� ���� In the
more formal version of the method �see 	��� ��� ���
� one would represent the variables
of the problem as multiple series in powers of two �or more in other physical problems

independent perturbation parameters� � and � of Eq� ��
 �this is why we call the method
multiparametric�� Then the evolution equation and the expressions for velocities and
pressure follow from the leading�order equations for the leading�order coe�cients of the
power series� There is no need for this more formal procedure unless one is concerned with
higher�order corrections to the leading�order results�

We note that all the terms of Eq� ��
 can be found among the about one hundred
explicitly given terms of an equation obtained by Krishna and Lin 	���� who used formal
expansions in a long wave parameter �see also 	� �
� Our derivation thus establishes that
only a small number of those terms should be included in the equation� All other terms are
negligible whenever the equation can yield a good approximation� i�e� under conditions ��

or ��
�

� Numerical simulations of evolution PDE

Here we report some preliminary results of our simulations of the dissipative�dispersive
equation ��
 with periodic boundary conditions� We believe that the results can be
insensitive to the exact form of the boundary conditions only when the dimensions of the
domain are su�ciently large that it contains many �elementary structures� �for example�
it is known that such simulations give �surprisingly good results� 	
�� for similar problems
of the boundary�layer wave transitions
� Hence� we solved Eq� ��
 on extended spatial
intervals� � � y � 
�p and � � z � 
�q� where p� � and q � ��

We used spatial grids of up to 
 �	
 � nodes� with the Fourier pseudospectral method
for spatial derivatives and with appropriate dealiasing� Time marching was done �in the
Fourier space
 by using Adams�Bashforth and�or Runge�Kutta methods� We checked the
results by re�ning the space grids and time steps� by verifying the volume conservation�R

dydz � �� etc�
We have used a variety of initial conditions� Some of those were motivated by the

experiments 	���� The inlet conditions of their experiments were modeled by our initial
conditions 	see Eq� ��

 below��

In the remainder of this section� we discuss results of our numerical simulations�
including �i
 the e�ect of dispersion on the large�time behavior of the �lm surface near
the attractor� �ii
 an investigation of two�dimensional stationary waves and their stability�
and �iii
 the e�ect of varying the wavenumber of the initial �forcing� on the transient states�
in comparison with the experiments of Liu et al� 	����
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��� Large dispersion� Unusual ��D patterns on attractors

The most striking result of our numerical simulations has been a discovery of highly
nontrivial patterns in time�asymptotic states for the strongly dispersive cases of Eq� ��
�
� � �� These self�organized states are reached by the system starting from the small�
amplitude ���D
 white�noise conditions �whereas with the same� random initial conditions
we see no ordered patterns� but just chaos� in the large�time states of the surface in the
case of small dispersion
� Invariably� spatial patterns studied up to now in �uid�dynamical
experiments�as well as in solid state physics� nonlinear optics� chemistry� and biology�
were almost periodic� at least locally �see e�g� 	��
� In contrast� our results reveal that
patterns of quite a di�erent character can exist on attractors of dissipative�dispersive
systems� The patterns we report here consist of two subpatterns of localized surface
deviations� One of these subpatterns is a V�shaped array of larger�amplitude bulges on
the �lm surface� Those are surrounded by smaller�amplitude droplets� These constitute the
second� lattice�like subpattern� Each of the two subpatterns spans the entire domain of the
�ow� However� the bulge formation moves as a whole �percolating� through the droplet
subpattern �which itself moves as a whole with respect to the solid plate
�

Figure � shows a snapshot of the �lm surface at t � �
��� for a �lm with � �  � �and
p � q � ��
 on a vertical wall �i�e�� � � �
� �There� because of the scaling� the small slopes
are exaggerated�
 Figure 
�which presents the evolution of �energy� E � R


�dydz�
testi�es to the fact that by that time the system has approached its asymptotic state in
which there is no further systematic change� Figures ��a
 and ��b
 show the above�
mentioned two�stream nature of the pattern� The V�shaped formation �consisting of ��
large bulges� see also Fig� �
 moves as a whole with a certain velocity� and the small�
amplitude background moves uniformly as well� but in the opposite direction �in appropriate
reference frames
� in addition� the droplet subpattern slowly changes in time� �An especially
clear view of those motions is provided by our computer animations�
 We note that one
component of this spatiotemporal pattern� the bulges� have been already discovered in
	���� for � � 
 and p � q � ����
�
� �They simulated a dissipative�dispersive equation
	��� in which the � term of Eq� ��
 was absent� since the derivation 	��� was based on
a certain�unnecessary� as we discussed above�assumption�
 But apparently the authors
of 	��� used only contour plots as their graphics tools� and overlooked the second� droplet
subpattern�and thus the entire complex� dynamical character of the two�phase pattern�

One can see in Figs� 
 and � the following features� The characteristic lengthscales
for the both subpatterns are � �� The same follows from the requirement 	�� ��� that the
destabilizing �third
 term of Eq� ��
 balances the stabilizing �fourth�order
 one so that the
amplitude may remain� on average� constant� However� the amplitude of a bulge chaotically
fluctuates� The amplitude of these �uctuations is approximately equal to the amplitude
of the droplets �� ��
� The amplitude of a large bulge �� ��� here
 is estimated to be � �
from the balance between the dispersive and nonlinear terms of Eq� ��
�

The V�shaped formation of bulges moves downstream with the velocity �in the moving
reference frame
 
 �� �U � The observed streamwise velocity of the other� small�amplitude
subpattern is 
 �
 � ����
U in the laboratory reference frame� So� this subpattern moves
down the wall if � � ���� but up the wall otherwise� An order�of�magnitude estimate of the
droplet velocity c can be obtained by balancing the term c
z �which will appear in Eq� ��

as a result of the transition to the co�moving reference frame
 with the �large
 dispersive
term� Then the amplitude of droplets is estimated from the requirement that the nonlinear
term be of the same order as the �small
 dissipative terms� These estimates appear to be
in agreement with what is observed in our numerical simulations� There is a perturbation
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Fig� �� Snapshot of the pattern on an attractor of Eq� ��� with � 	 
 �i�e� the scaled surface

of a �lm �owing down a vertical plate� here	down the page� with illumination from the top left��

� 	 �
� and periodic boundary conditions on 
 � y� z � �
�
 a view in an oblique direction� for

t 	 �


�

Fig� �� Evolution of the surface deviation �energy�
R
��dydz from an initial small
amplitude

�white
noise� surface to an attractor of Eq� ���� The snapshots of Figs� � and � were taken near

the end of this run�
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Fig� �� �a� Cross
stream view of the pattern shown in Fig� �� �b� Same as in �a� but after a

time interval �t 	 
�
�� Note that the vertical motion of the V
shaped formation of bulges from �a�

to �b� is in the opposite direction to that of the droplet pattern�

theory of weak interactions �e�g� 	�� ��� ���
 for the �pulses� 	
�� of the ��D version of
Eq� ��
� similar to 	

�� However� no analytic solution is available for a solitary ��D bulge
�we speak in such cases of ��D structures because the underlying velocity �eld depends on
all three spatial coordinates� see also 	���
� and therefore the prospects for constructing a
similar interaction theory for the ��D bulges are limited�

Droplets collide with bulges� As a droplet runs into a bulge� the bulge�s amplitude
increases momentarily� Shortly after that� it decreases again while a droplet separates from
the opposite side of the bulge� These interactions are �almost
 reversible� like interactions
of KdV pulses 	 ��� and unlike the irreversible coalescences of 
�D pulses discovered in 	
��
and 	�
� for highly nonlinear dissipative equations�

As the value of � for the above simulations is varied �from � to  �
� the attractor pattern
changes� At small �� we observe chaotic �although ��D
 waveforms� 	Note that at � � ��
the ��D version of Eq� ��
 is the Kuramoto�Sivashinsky equation� which on extended spatial
intervals yields chaotic attractors� see e�g� 	���� For larger � however the ordering e�ect of
dispersion becomes increasingly evident� The amplitude separation into the bulges and the
background becomes noticeable for � �  � and continues to grow with ��

In another set of simulations� with � �  � and p � q � ��� we vary � from � to  ��
For small values of � �� ��

� the attractor pattern is similar to that discussed above for
� � �� As � is increased however the �lm surface becomes more chaotic and the amplitude
of droplets increases up to becoming comparable to that of the bulges� Starting from
� ��  �� the overall pattern has just one phase� it consists of large�amplitude� roughly 
�D
ripples elongated in the y direction� This �nds some explanation in the linear theory� The
formation of large�amplitude bulges requires that many spanwise �as well as streamwise

modes be present� However� as � grows� modes with higher spanwise wavenumbers stabilize
	see Eq� ��
�� which suppresses the formation of ��D bulges�

Similar to Eq� ��
� we 	�
� ��� have derived an evolution equation for a �lm which
�ows down a vertical cylinder� The only essential di�erence between that equation and
Eq� ��
 is the opposite sign of the � term� However� this term disappears in the case of
a vertical planar �lm� which is also the limit of an in�nitely large radius of the cylinder�
Our simulations showed that even for p �  the corresponding � term of the annular��lm
equation is su�ciently small so that the results essentially coincide with those of the � � �
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version of Eq� ��
� Thus� the theory leading to Eq� ��
 can be checked in experiments
with �lms �owing down vertical cylinders� The cylinder should be su�ciently long so that
the waves could have time to approach the attractor� One �nds that with fh� � � mm� the
radius � � cm� and with the conditions ��
� in order for the cylinder to be not too long�
the liquid should be su�ciently viscous� in fact several hundred times as viscous as water�
This requirement can be easily satis�ed with e�g� a glycerol�water solution� 	We note that
one can see a straight row of bulges in the photograph of a �lm �owing down a cylinder in
Fig� 
 of Ref� 	 �� however� the ��condition of validity ��
 was not strictly satis�ed there��

Among other results� our simulations con�rm that�as had been implicitly assumed
in deriving the global�validity conditions for EE�the solutions of our equation remain
bounded� Furthermore� the amplitude of the solution is of the same order of magnitude as
the estimates obtained by pairwise balance of terms in the evolution equation�

These simulations also demonstrate that the large�time behavior of the solutions of ��

is essentially insensitive to the initial conditions� The solution evolves toward an attractor
whose nature is dependent on the basic parameters of the system�

��� Small dispersion� ��D stationary waves and their stability

During our numerical simulations with one� and two�frequency forcing� we have observed

�D stationary waves which are stable to ��D disturbances at certain wavenumbers of the
primary forcing� For wavenumbers k between �� and ���� these stationary waves consist
mainly of the fundamental and a few of its stable overtones at smaller levels� Such stationary
waves for di�erent �lm evolution equations were constructed by many researchers �e�g�
	��� 
 � ���  ��� it seems however that most of the huge number of such stationary solutions
are very unstable� and only few of them are observed in experiments�only when arti�cial
forcing is present at that
� In the wavenumber range �� � k � �� the stationary waves
can be well approximated as two�mode equilibria consisting of the unstable fundamental
and the stable overtone� In the absence of dispersion� approximating 
 as the Fourier series
truncated at the Nth member�


�z	 t
 �
NX
n��

An�t
e
inkz � c�c�	���


one obtains from Eq� ��
� for N � 
� the Galerkin system dA��dt � s�A� � ikA�
�A�

and dA��dt � s�A� � ikA�A�� where sn � n�k��� � n�k�
� Hence� at a stationary state
��An��t � �
� assuming A� to be real� one �nds

A� �
q
s�js�j�k� A� � �is��k�

Our numerical simulations have indeed resulted in stationary waves with mode amplitudes
and phase relations similar to that given by the above expressions�

Similarly� including the third harmonic� so that 
� �
P�

n��Ane
inkz � c�c�� we �nd for

the stationary wave

A�
� �

s�X

k� 	�� �X�s��
	 A� � ik

A�
�	

s� � ��k��s�
A
�
�


 	 A� � ��k�

s�

A�
�	

s� � ��k��s�
A
�
�



�in the reference frame where A� is positive
� where X � �s���� ���

q
s�� � �
s�s�� While

the amplitude of the additional mode is small in comparison with that of A� and A�� its
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Fig� �� �a� Growth rate �for the values of � shown in the legend� and �b� the streamwise

Bloch�s wavenumber of the fastest
growing Bloch�s mode �see Eq� ����� of the secondary instability

for � 	 
��� �� 	 
�
����

inclusion makes the agreement with the numerically found stationary waves even more
close� For a small disturbance which is a normal mode of the Bloch type �introduced a long
time ago for the stationary wavefunctions of an electron in the periodic �eld of the crystal
lattice� see e�g� 	���
�

H � ePt	ik
Jy	Kz�
lX

m��l

Bme
imkz	���


one obtains� after substituting 
 � 
�� H into Eq� ��
 and linearizing it� an eigenvalue
problem for P � �This is the so�called Floquet analysis�which was applied to �lm waves
in 	��� and was used earlier in other hydrodynamic problems� see e�g� 	
�� ���� We
believe Bloch�s rather than Floquet�s name is more appropriate in this context� see e�g�
	� � 
�� ���
� The eigenvalues P � Pr � iPi were found by solving the eigenvalue problem
numerically� The number of modes l in the Fourier series truncation ���
 was increased
until the eigenvalues converged within an acceptable accuracy� We are interested only in
the eigenvalue whose real part is maximum� This maximum real part G � maxPr�the
growth rate of the instability�is shown as a function of the primary wavenumber k in
Fig� ��a
� for three di�erent values of the parameter �� The corresponding value of the
streamwise Bloch�s wavenumber K at which the maximum growth occurs is shown in Fig�
��b
 for the intermediate value � � �� � �which value corresponds to the parameters of
some of the experiments of 	���
� One sees from Fig� ��a
 that for the case of a vertical
plane�as was already noted in numerical studies by Chang et al� 	���there are no 
�
D stationary waves stable to ��D disturbances� However� we �nd that� as � increases
from �� a window of wavenumbers appears over which 
�D stationary waves are stable
to all disturbances� including the ��D ones� The window reaches its maximum extent at
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Fig� �� Evolution of the Fourier
mode energies of the surface deviation starting from the

general forcing initial condition� Eq� ���� �� 	 
���� � 	 
�
��� p 	 �� q 	 ���� and into a stationary


wave state� The only modes noticeable are the fundamental �m 	 
� n 	 ��� the solid line� and its

�rst overtone �m 	 
� n 	 �
�� other modes never reach an appreciable level of energy�

� 
 ��  and remains the same for all � 
 ��  � in which domain of � the most unstable �or
least stable
 disturbances are two�dimensional� Since the � term of our Eq� ��
 vanishes
for the streamwise disturbances� the curve in Fig� ��a
 characterizing the stability to all

disturbances for � 
 ��  coincides with the one which deals with only 
�D disturbances in
the case of a vertical �lm� � � �� shown in Fig�  of Ref� 	���

Our numerical simulations have con�rmed the existence of the island of stability� To
obtain the stationary waves� we have used �one�frequency�forcing� initial conditions� i�e�
those with one dominant fundamental Fourier mode �which was 
�D� streamwise
� Its
harmonics� the �rst oblique subharmonic� and noise were present at smaller levels� In Fig�
 we show the evolution of the �energies� Em�n of the Fourier modes� de�ned as

Em�n �j amn j�

where amn is the Fourier coe�cient�


 �
X

amne
i
my�p	nz�q��

In this simulation with p � � and q � ��� the initial condition was of the form


�y	 z� t � �
 � Af cos�nf "z
 �Ah	cos�
nf "z � ��
 � cos��nf "z � ��
���



�Ah	cos�nf "z � ��
 � cos�
nf "z � ��
 � cos��nf "z � ��
� cos "y

�Asub	cos��� nf "z � ��
 � cos��� nf "z � ��
 cos "y�

�small white noise	

with Af � ��
� Ah � Asub � ��� � nf � ��� in ��

� "y � y�p� "z � z�q� and �i are
independently generated random phases� The only modes noticeable in Fig�  are the
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Fig� �� Evolution from a �
D �white
noise� initial condition �� 	 � 	 
� q 	 ���� �a� Total

energy and �b� energies of the most active Fourier modes �the number shown in the legend next

to each line is the corresponding value of n� note that the n 	 �� mode is the fastest
growing one

according to the linear theory��

Fig� 	� Evolution from a �
D white
noise initial condition �� 	 
�
� � 	 
�
� p 	 �� q 	 ����

�a� Evolution of combined energies Em �
P

nEm�n for the three lowest values of m �indicated in

the legend�� �b� Energies E�n of the streamwise �m 	 
� Fourier modes for t 	 �
 �the solid line is

a guide to the eye��
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fundamental �m � �	 n � ��
 and its �rst overtone �m � �	 n � �

� other modes never
develop� Also� we observed in our simulations that the addition of �white noise� into the
initial condition does not prevent the system from attaining the stationary state� provided
the signal �i�e� the amplitude of the primary forcing
 is at least an order of magnitude
larger than the noise�

For those wavenumbers not inside the stable window� it is still possible to obtain quasi�
stationary waves� when the initial forcing contains only one frequency� We found that the
�Floquet� growth rate depicted in �gure ��a
 is capable of giving some estimate of the
lifetimes of the quasiequilibria� However� this linear stability analysis is of limited use� It
often fails to predict what patterns emerge as a result of instability� because the system
quickly reaches a nonlinear stage which can bring to prominence modes other than those
dominating the initial stage of instability�

Finally� our numerical simulations with the 
�D �Fig� �
 and ��D �Fig� �
 �white�noise�
initial condition never yielded any stationary �or even quasistationary
 waves� After the
stage of initial exponential growth 	see Fig� ��a
�� near the maximum of the total �energy�
E �

P
m�nEm�n �which is proportional to the spatial average of 
�
� the fastest�growing

mode of the linear theory is de�nitely the one that is dominant 	see Fig� ��b
�� For some
limited time �around t � � 
 the maximum shifts to higher wavenumbers� The latter
however still fall short of the stability window�in which this maximum should have ended
according to the spirit of the interesting transition scenarios suggested in 	�� �� �� �for a
di�erent model of �lm waves� On the experimental side� there seems to be little evidence
that such a shortening of the characteristic wavelength does occur�
 Gradually� as the
total energy �uctuates considerably around its average level 	see Fig� ��a
�� the energy
spreads wider and wider over the spectrum of modes� while the �lm surface evolves from a
quasi�sinusoidal state to a fully chaotic one�

��� Small dispersion� Transient patterns and physical experiments

While the large�time behavior of the �lm is insensitive to the initial conditions �see
subsection ���
� the transient states are dependent on the initial condition �unless the latter
is a predominantly monochromatic forcing of type ��

 with the fundamental wavenumber
in the window of stability
� For di�erent initial conditions� the �lm surface exhibits a
variety of patterns� Our study of the transient states has been primarily motivated by the
recent experiments of Liu et al� 	���� They perturbed the �ow at its inlet with sinusoidal
pressure variations at a �xed frequency f � In addition to this single frequency �forcing��
in some of their experiments� a secondary forcing at the subharmonic frequency f�
 was
used� The amplitude of the secondary forcing was considerably smaller than that of the
primary one� �The motivation for using the secondary forcing was to enhance any broad�
band subharmonic resonances
� We modelled this inlet forcing by the initial conditions of
type ��

� with Ah � Af and Asub � Af �

In addition to the initial conditions� we have also been motivated by the experiments
of Liu et al� in the selection of values of the parameters � and � for our simulations� One
can see that the values � � �� � and � � ���� we used in most cases are fairly typical of
the experiments of Ref� 	���� We again point out that values of parameters �R� W � and
�
 in those experiments lie outside the domain of validity of Eq� ��
 	there exist however
many other sets �R� W � �
 which lead to the same values of � and �� and at the same time
do satisfy the validity conditions ��
��

When the wavenumber of primary forcing �k
 is close to the neutral wavenumber� and in
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Fig� 
� Subharmonic interaction of Fourier modes in a run with the initial condition ����

whose frequency of primary forcing is close to the neutral one �q 	 ��� nf 	 ���� �a� Evolution of

energies of the principal Fourier modes �the numbers shown in the legend next to each line are the

corresponding values of m and n� in this order�� Note that since nf is an odd number� there are two

�almost
subharmonic� modes� one with n 	 � and the other with n 	 �� �b� Checkerboard pattern of

the �lm surface for t 	 
� �c�f� Fig� �� of ������ The interval between two neighboring isothickness

contours is 
���

Fig� �� Similar to Fig� � but for a run starting from the general initial condition ����� with

q 	 �� and nf 	 ��� Note that the checkerboard
like pattern in �b� is not perfect� but the streamwise

period
doubling is clear �t 	 ����� only one quarter of the streamwise extent of the periodicity domain

is shown� the interval between two neighboring isothickness contours is 
����
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Fig� ��� �
D �synchronous instability� of initially �almost� �
D waves� Eq� ���� with Asub 	 
�

at lower forcing frequencies �q 	 ��� nf 	 
��� �a� Evolution of energies of four principal Fourier

modes� Note the quasistaionary
wave state beginning at some time after t 	 �

� �b� The surface

pattern at t 	 ��� �� 	 
���� � 	 
�
�
 c�f� Fig� ��a� of ������ The interval between two neighboring

isothickness contours is 
���

Fig� ��� �Solitary wave� pattern in a run with a low
frequency forcing �the initial condition

����� with q 	 �� and nf 	 �� � 	 
���� � 	 
�
���� �a� Evolution of energies of some principal

Fourier modes �the numbers shown in the legend next to each line are the corresponding values of

m and n� in that order�� �b� The wave pro�le at t 	 ����� Only a part of the train of four solitary

waves is shown �c�f� Fig� ��b� of ������
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the presence of secondary forcing at the subharmonic frequency 	i�e� Asub �� � in Eq� ��

��
the oblique subharmonic interacts very strongly with the fundamental� This is illustrated
in Fig� � for an idealized initial condition�


�y	 z� t � �
 � Af cos�nf "z
 �Asub cos��� nf "z
 cos "y���


with Af � ��
� Asub � ��� � and nf � � �while q � ��
� Figure ��a
 shows the
strong interaction with the exchange of energy between the fundamental and the oblique
�detuned
 subharmonics� The surface exhibits checkerboard patterns such as the one in
Fig� ��b
� which is seen to resemble the checkerboard pattern of �cat eyes� in Fig� �
 of
Ref� 	���� With the full initial forcing ��

 however other modes become signi�cant� as is
evident in Fig� ��a
� and while the period doubling is obvious� the chekerboard pattern in
Fig� ��b
 is not perfect� Indeed� the characteristic property of the oblique subharmonic
cos�nf "z�
 � �
 cos "y which is responsible for the checkerboard structure� its invariance
under the transformation �"z	 "y
 ��"z � 
��nf 	 "y � �
� is readily seen to be not shared by
such modes as the fundamental oblique cosnf "z cos "y and the second oblique subharmonic
cos�nf "z�

 cos 
"y� The latter modes thus spoil the perfect checkerboard pattern� The
property of period�doubling however is very robust provided the forcing is su�ciently close
to the neutral wavenumber� As the forcing wavenumber decreases from the neutral� the
intensity of the interaction between the fundamental and the subharmonic decreases� These
observations are in qualitative agreement with the experimental results of Liu et al� 	����

With one�frequency initial forcing at wavenumbers below the stability window� we
observe evolution similar to the �synchronous instability� of experiments 	���� For the
run shown in Fig� ���a
� the values generated by the parameters of the corresponding
experiment were � � ���� and � � ��� � One can see that oblique modes with m � 

become important� and a quasi�stationary ��D state develops when the noise level in the
initial condition is low� The resulting �lm surface pattern shown in Fig� ���b
 looks similar
to the one in Fig� �� in 	���� Eventually� the patterns yield to chaos� We note that the
appearance of synchronous patterns and their exact nature is dependent on the harmonic
and noise content in the initial conditions� If the initial condition has a subharmonic
component� i�e�� Asub �� � in ��

� the synchronous patterns appear in combination with
period�doubling patterns� At even lower wavenumbers of the one�frequency forcing� the
�ow develops solitary wave�like transient patterns 	see Fig� ���� These patterns resemble to
some degree the patterns in Fig� 
 of Ref� 	��� obtained at low�frequency forcing �however�
the experimental solitary waves seem to have large amplitudes and are likely to be strongly
nonlinear
�

Thus� the solutions of Eq� ��
 qualitatively reproduce the experimentally observed types
of transient patterns on inclined �lms� along with the correspondence of the pattern type
to the forcing frequency�

	 Conclusion

By using the multiparametric perturbation approach� we have developed a theory of a
wavy �lm �owing down an inclined plane� It includes an evolution PDE for �lm thickness
and explicit expressions for pressure and velocities in terms of its solutions� as well as
conditions of validity �both local�validity and global�validity ones
� We argued that the
PDE ��
 for the �lm thickness is the most general equation derivable �from the full Navier�
Stokes problem under consideration
 as a rational� well�controlled approximation� For
large�amplitude waves the approximation 	and the Benney equation which is a particular
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case of our equation ��
� cannot be good uniformly for all time� We pointed out however
that Eq� ��
 has a chance to avoid explosive solutions and thus can be preferable to
the Benney equation as a qualitative model for the large�amplitude waves� In contrast�
the small�amplitude evolution equation ��
 is valid for all time provided the parametric
conditions ��
 are satis�ed�

The numerical simulations of this equation in the case of large dispersion reveal unusual
spatiotemporal patterns on the system attractors� These nonstationary ��D patterns
are highly organized but di�er from other patterns which have been usually studied in
nonequilibrium dissipative systems� the new patterns are not simply periodic� even locally�
The patterns we have found consist of two subpatterns which percolate through each other
�each subpattern by itself is almost stationary� one of them is essentially nonperiodic� but
both are highly ordered
� Experiments which would satisfy the conditions of validity of our
theory require highly viscous liquids� such as glycerol and its water solutions�

For the parameters of the recent experiments 	���� preliminary results of our simulations
are in qualitative agreement with the ��D transient patterns observed in those experiments�
subharmonic interactions and checkerboard patterns at near�neutral frequencies of forcing�
synchronous �i�e� with no period�doubling
 transverse deformations of waves at intermediate
frequencies� and solitary waves at low frequencies� This is despite the fact that the
experimental parameters are somewhat outside the domain of guaranteed validity of our
theory� We have also observed the formation of stationary waves for a certain range of
forcing frequencies which has been also obtained theoretically�

While the validity of the evolution equation is obviously more limited than that of
less drastic simpli�cations of the full Navier�Stokes problem� evolution equations have the
advantage of being much more amenable to numerical simulations and theoretical studies�
Results obtained for small�amplitude equations�derived as well�controlled approximations
with known conditions of validity�might lead to insights useful for the studies of even
large�amplitude waves on �owing �lms�

We are grateful to Mr� I� Yakushin� Dr� A� Minga� and Mr� X� Zhang for technical
assistance� We have used the computing facilities of the Alabama Supercomputer Authority
and the National Energy Research Supercomputing Center of the Department of Energy�

A The full NS problem

In a coordinate system moving with a velocity V in the z�direction� the Navier�Stokes �NS

equations in the dimensionless form are �see e�g� 	
�


ut � uux � vuy � wuz � V uz � �px � 
 cot ��R� �uxx � uyy � uzz
�R	���


vt � uvx � vvy � wvz � V vz � �py � �vxx � vyy � vzz
�R	�� 


wt � uwx � vwy �wwz � V wz � �pz � 
�R� �wxx � wyy �wzz
�R����


The continuity equation is
ux � vy � wz � �����


The boundary conditions are as follows� The no�slip conditions at the surface are

u � v � w � � at x � �����


The tangential�stress balance conditions at the free surface are

p��hy � p��	�� hy
��� p��hyhz � p��hy � p��hz � �	���
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p��hz � p��	�� hz
��� p��hyhz � p��hy � p��hz � ���
�


The normal�stress balance condition is

	p�� � p��hy
� � p��hz

� � 
p��hy � 
p��hyhz � 
p��hz�	� � hy
� � hz

����� ��
�


�	hyyf� � hz
�g� hzzf� � hy

�g � 
hyhzhzy�

where the stress components are

p�� � �p� 
ux�R p�� � �uy � vx
�R	�




p�� � �p� 
vy�R p�� � �vz � wy
�R	

p�� � �p� 
wz�R p�� � �uz � wx
�R�

Finally� the kinematic condition at the free surface is

ht � vhy � whz � V hz � u��
�


B Expressions for velocity corrections

The expressions for the velocity components v� w�� and u� in terms of h are

v � �x
�

�
hzy � x�

h
hyhz � hhzy �W �r�h
y � cot �hy

i
�
�


�x
h
�hhyhz � �h�hzy � 
hW �r�h
y � 
h cot �hy

i
	

w� �
x�

�
Rhhz � x�

�

h
r�h� hzz � 
Rhz

i
�
 


�x�
h
�hhzz � cot �hz �W �r�h
z � hzhz

i
�x

h
h�r�h� �h�hzz � 
 cot �hhz � 
Wh�r�h
z

�
Rh�hz � 


�
Rh�hz � ��hhzhz � 
hhyhy
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