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Abstract

Flow of an incompressible Newtonian film down an inclined plane is considered. A
multiparametric perturbation approach yields the most general leading-order equation
for film thickness which can quantitatively approximate film evolution for all time. The
theory yields explicit expressions for velocities and pressure in terms of film thickness.
Conditions of (i) local (in time) and (ii) global validity of the theory are obtained. The
evolution equation contains both dissipative and dispersive terms. It is valid for small-
amplitude wave regimes. Numerical simulations with periodic boundary conditions
show transient spatial patterns in qualitative agreement with recent experiments. For
parametric conditions with large dispersion, highly ordered unusual (non-periodic)
spatial patterns are observed at large times, near dynamical system attractors.

1 Introduction

Liquid films flowing on solid surfaces are readily found in nature and industry, in both
single- and multifluid settings; an example of a multifluid film system is the so-called core-
annular flow (see e.g. [27]). In simple planar or cylindrical geometries one easily finds
stationary solutions (of the Navier-Stokes equations) which are uniform along the film.
More often than not, however, these flat-film (“Nusselt’s”) solutions are unstable. The
resulting wawvy films increasingly fascinated researchers over the course of this century (see
e.g. [6,28, 37, 38, 39, 40] for a considerable history of film studies), and significant progress
has been made. However, the strongly nonlinear dynamics of film waves involves many
active degrees of freedom, and, in our opinion, we are still far from fully understanding the
complex evolution of these waves.

Recently, Gollub and his co-workers [38, 39, 40] experimentally studied intriguing
3-D wave patterns in a film flowing down an inclined plane. In general, the phenomenon
of pattern formation in nonequilibrium dissipative systems is currently a topic of active
experimental and theoretical research (see [9] for a recent progress review). A common
feature of spatial patterns studied up to now in fluid-dynamical experiments, including those
of Liu et al. [40] on film waves—as well as in solid state physics, nonlinear optics, chemistry,
and biology—is that they are almost periodic, at least locally. One wonders if such must
always be the case. Our recent theoretical and computational research on films flowing
down inclined planes reported here indicates an answer to this question: Highly ordered
patterns, but of a character quite different from a simple periodicity, can spontaneously
emerge in some driven dissipative systems.

The fundamental description of wavy film flows is given, of course, by the Navier-
Stokes (NS) equations. However, that system—of four coupled partial differential equations
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(PDEs), additionally complicated by boundary conditions (BCs) at a moving boundary
whose PDE itself involves the unknown velocity fields—is too difficult even for the most
powerful modern computers. Fortunately, for certain domains in the space of parameters,
simplified approximate descriptions are possible. In the most favorable cases, such a
description would hinge on a single PDE, governing the evolution of some unknown quantity
of the film—the quantity being the film thickness in all examples known to us. In the next
section, we sketch such a theory for an inclined film; it leads to a dissipative-dispersive
PDE for the film thickness. We argue that it is the most general leading-order equation of
this kind which can be systematically derived from the full NS problem by using only well-
controlled approximations (however, non-leading dissipative terms can be important when
dispersion is large—as in [13, 29]). As a result, one simultaneously obtains the conditions
for the theory to give a good approximation to the exact dynamics. We introduce the notion
of local-validity conditions. These involve the characteristic lengthscale and amplitude of the
current deviation of the surface from its average, Nusselt’s position. Those characteristic
quantities can change with time, and the local conditions can break down as a result. In
such a case, the evolution equation (EE) based theory provides a good approximation for
only a limited interval of time. We argue that such is the case for the Benney equation
widely used to describe large-amplitude waves on inclined films (and that in fact no EE
can do a better job). It is better, of course, if an approximation is good uniformly for all
time. For this, certain global-validity conditions should be satisfied which, naturally, involve
only time-independent, basic parameters—such as the Reynolds number, Weber number,
etc. We obtain the most general theory of this type involving an evolution equation for
film thickness. Where it is valid, it leads to small-amplitude waves, in accordance with
the above remarks. The approach we use to obtain the outlined theory—which includes
the evolution PDE, explicit expressions for velocities and pressure in terms of the PDE
solutions, and the local- and global-validity conditions—is a further development of the
multiparametric perturbation (MP) approach which has been suggested and used in our
earlier papers [13, 14, 16, 19].

In section 3 we report some preliminary results of numerical simulations of our
dissipative-dispersive evolution PDE. They have revealed unusual, highly-ordered but
nonperiodic patterns on attractors of large-dispersion systems. For small dispersion, we
observe qualitative agreement with transient patterns discovered in physical experiments
[40]. This is somewhat surprising because their values of basic parameters are outside of
the domain of validity of our theory (although comparatively close to it).

Summary and some conclusions are presented in the last section.

2 Theory hinged on a film thickness evolution equation

In this section we sketch a perturbation theory which includes an evolution PDE for film
thickness, explicit expressions for velocities and pressures in terms of the film thickness,
and conditions of validity for such a convenient approximation of the true evolution of the
film. More complete derivations will be published elsewhere [24].

2.1 Large-amplitude waves and local-validity conditions

Consider a layer (of an average thickness hg; the overbar here and below indicates a
dimensional quantity) of an incompressible Newtonian liquid of a density p, viscosity 7,
and surface tension & flowing under the action of gravity (whose acceleration is g ) down an
inclined solid plane whose angle with the horizontal is §. Nusselt’s velocity U at the interface
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is U = gh3sinf/(2v) (where v = Ji/ p is the kinematic viscosity). We nondimensionalize
all quantities with units based on 5, hg, and U. Then only three independent dimensionless
system parameters appear in the dimensionless equations and boundary conditions; e.g. the
angle 0, the Reynolds number R = hoU /77, and the Weber number W = o R/2. The z axis
of our system of coordinates is normal to the solid plane and directed away from it (and
into the film); the y axis is in a spanwise direction; and the z axis is directed streamwise.
The z, y, and z components of velocity are denoted, respectively, u, v, and w.

Let wg be the Nusselt velocity for an imaginary film of constant thickness h which is
equal to the local thickness h(y,z,t) of the real film (which is in line with experiments
[1]): wo = 2hx — x?. Similarly, the locally Nusselt pressure py is by definition py =
2(h — x) cot 8/ R. [Note that wy and py depend on y, z, and ¢ (through h(y, z,t)) as well as
on z.] The reference normal component of velocity u is chosen to satisfy incompressibility,
i.e., it is defined as the solution of up, = —wp, (the subscripts z, y, z, and ¢ denote the
corresponding partial derivatives), with the no-slip boundary condition ug =0 at z =0,
which solution clearly is ug = —2%h,. Finally, our spanwise reference velocity is identically
equal to zero. The NS problem (see Appendix A) becomes an exact one for a new set
of unknowns—h, uq, v, wy, and p;—by the substitution v = uy + uy, w = wy + wi,
and p = py + p1 (the remaining unknown v is not changed). For example, the kinematic
boundary condition [Eq. (23) in Appendix A (V = 0)] at the free surface = = h becomes

(1) hy + vhy + (wo + wi)h, —ug —ug = 0.

Actually, analyzing derivations of known EEs, it is easy to see that these evolution equations
always come from such a kinematic condition. Namely, the NS equations are simplified by
discarding some terms, to become essentially ordinary differential equations (ODEs) for
velocities and pressure as functions of z [with other independent variables entering as
parameters only, through h(y, z,t)]. Having solved these simple (but nonhomogeneous)
ODEs with constant coefficients, one substitutes those solutions for velocities in terms of
h into the kinematic condition. This yields a closed PDE for A, the evolution equation. In
our derivation, we follow this prescription as well, but we take care to discard only those
terms in the NS equations which must be dropped if one is to obtain the solvable ODEs. In
this way, one first finds p; from the z-NS equation, with the BC coming from the normal-
stress balance condition at the free surface (for simplicity, the pressure of the ambient gas is
neglected). Clearly, in this problem for py, all terms containing one or more of the unknowns
u1, v, and wi need to be discarded. Next, the y-NS equation is recast into an ODE for v.
Here, only terms containing u; or/and w; must be discarded; the p;-term is retained as it
is now a known expression in terms of h. However, all terms containing v, except for the
viscous one with v,,, are to be discarded as well—otherwise we will not have a solvable
ODE in z. It turns out that this requirement automatically eliminates all terms with u
and wy as well. If we denote by A the characteristic amplitude of the surface deviation
n=h—1,and let T, Y, and Z be, respectively, the characteristic time-, y—, and z—scales,
then, for example, the condition that the neglected viscous terms be smaller than the ones
retained, after estimating these quantities in terms of the characteristic scales, yields the
requirement (1 + A)2/L? < 1 [where by definition L =min(Y, Z)]. Thus, as a consequence
of our “derivability” principle, we have obtained the small-slope condition—which usually
is rather postulated in the “lubrication” or “long-wave” derivations. In obtaining this
condition, we have used the estimates of the derivatives: For example, for the z-derivatives,
we have 0/0x ~ 1/(1+ A), in the sense that 9/0z ~1if A~1lor A< 1, and 9/0x ~ 1/A
if A> 1 (since h ~ A for A > 1 and the velocities change from being zero at x = 0 to
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their full magnitudes at x = h; hence, the characteristic lengthscale of change is h, which is
~ A). Also, 0/0t ~ 1/T, 8%/0y* ~ 1/Y?, 8*/0y0z ~ 1/Y Z, etc. Similar to the small slope
condition above, (R/T)(1 + A)? < 1 follows; etc. In fact, one can estimate the velocities
even before solving the equations; for example, one finds

(1+APA WAL+ A)? WAL+ A)? cotfA(1 + A)?

v max) oy Y7z ys

Substituting such estimates into inequalities demanding the smallness of terms which must
be discarded, one finally arrives at the set of independent conditions for the derivation to
be justified. These validity conditions can be combined as follows:

1+ AW (1+A)cot® (1+ AR (1+ A)?
L3 L L 12

(2) max <1,

where we have assumed, for simplicity, that either Y ~ Z or Y > Z—which so far has been
the case in all experiments. [All these conditions can be obtained e.g. already from the
requirement of negligibility of the term containing u;, in BC for wy, Eq. (20) in Appendix
A.] Due to these conditions, even some terms which can be retained in the equations—and
handled, in principle, without any problem—are shown to be actually negligible; some other
terms are estimated to lead to a negligible contribution into the final evolution equation
and therefore can be discarded as well. As a result, one can see that the expression for p;
is in fact the solution of the problem [see Eq. (14) and (21) of Appendix A]

Piz = [UO:I::I:/R :] - 2hz/Ra

p1 = [2u0,/R — 0V?h =| — 4hh. /R~ oV?h  (z=h),

that is
(3) p1 = —2(z 4 h)h,/R — ocV?h

(here V2 = 0%2/0y? + 0?/02%). Note that this pressure contains a viscous contribution
in addition to the usual surface-tension part (and the reference pressure pg is of a purely
hydrostatic origin).

The equation for v is, in the simplified form, (1/R)vzy = poy + p1y- The boundary
conditions are v = 0 at x = 0 and, from a tangential-stress balance [see Eq. (19) in
Appendix A], v, = —ugy + woyh, — 2upzhy at £ = h. The solution of this problem for v is
the expression in terms of h given by Eq. (24) in Appendix B. The equation for w, is the
(simplified) 2-NS equation:

Wigzr = Rugwoz + woRwo, — 2Rwo, + R(po, + P12) — Woyy — Wozz + Rwoy.

(Note that we use the system of coordinates of a moving reference frame, whose (z—)velocity
with respect to the solid plane is V' = 2—that is the same as the well-known phase velocity of
the infinitesimal waves. Velocities however are those measured in the laboratory frame.) We
also have the boundary conditions w; =0 at z = 0 and, from a tangential-stress balance
equation [see Eq. (20) in Appendix A] at © = h, wiy = —uo, —2uozh, +woyhy+2wo,h,. The
solution is Eq. (25) of Appendix B. Next, the equation for u; comes from the continuity
equation: wi; = —vy — wi,, where v and w; are already known [see (24) and (25) in
Appendix BJ; and the no-slip BC requires that u; =0 at =z = 0. The solution is Eq. (26)
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in Appendix B. Substituting the expressions (24), (25), and (26) for velocities in terms of
h (taken at z = h) into the kinematic condition (1), we arrive at the EE

R 5 3
(4) = 15 (W) + 202 = Dhs + R |ghh = L%, Z

2
-5V [1(cot 0 — WV?)Vh] +2h*V?h, = 0.

(A one-dimensional version of this equation—which also lacked the last, odd-derivative
term—appeared before, e.g. in [33]. Also, we have omitted other dispersive terms which
are negligible in the limit of small amplitudes, see Eq. (5) below.) The solutions of this
equation give a good approximation to the true evolution of the thickness h—for some time,
at least—as long as the conditions (2) are satisfied.

Using those conditions along with the estimates of all the members of the EE (4) in
terms of the current amplitude A, the (current) lengthscale L, and the basic parameters, it
is easy to see that if A is not small, the equation is written as simply h; + 2(h? — 1)h, =0
(or just hy + 2h?h, = 0 in the laboratory reference frame): all other terms of the EE (4)
turn out to be much smaller than the remaining two. The solutions of the last equation
are well known to exhibit steepening of the wavefronts up to a breakdown in a finite time.
It follows that the EE (4) cannot be valid globally, i.e. for all time. But this EE is in
fact equivalent to the (widely used) Benney equation: The latter follows from the former
(in the laboratory reference frame and with the dispersion term omitted) if one substitutes
the expression —2h2h, instead of h; (the “trade of time- for space-derivative” of [2]) in
the second term of (4). Thus, the Benney equation can approximate the large-amplitude
waves at best for a finite time—a fact that was discussed in detail in [17]. As in the latter
paper, we again arrive at the conclusion that a film thickness EE which would provide a
good time-uniform approximation to large-amplitude waves (on films flowing down inclined
planes) does not exist (whereas for films flowing down cylinders such an equation was given
in [16]).

The two equations, (4) and Benney one, are however not obliged to be equivalent when
the conditions (2) break down, and there are indications that our equation has a chance to
avoid the explosive solutions (see e.g. [26, 43, 44]) which mar the Benney equation: Indeed,
it is the term with the highest power of h (in fact, h®) in its coefficient which causes the
explosion in the Benney equation, but our hS-term enters with the opposite sign. Thus,
although neither of the two equations is capable of a quantitatively good description of the
large-time behavior, the EE (4) might be a better choice to be used as a qualitative model
for large-amplitude waves. This possibility makes the equation worthwhile of a further
investigation (which we have not attempted as yet).

2.2 General evolution PDE, global-validity conditions, and MP approach

At small amplitudes, writing h = 1 4+ 7, (where n ~ A < 1), we arrive from the large-
amplitude evolution equation (4) at the EE for small-amplitude waves:

2 2 2
(5) M+ 41l + 30022 — = cot Oy, + ng% +2V%y, =0,
where by definition 0 = (4R/5 — cot#). The linear stability analysis (see below) shows
that one needs 0 > O—which condition we assume fulfilled from now on—to have an
instability and thus the possibility of an interesting nonlinear behavior. It follows that
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R > (5/4)cot @ > cotf. We use this inequality together with A < 1 to transform the
general conditions (2) and obtain the local-validity conditions for the small-amplitude

EE (5):

(6) max (W/L?, R/L, 1/I?, A) < 1.

One can see from our derivation of the EE (5) that the third, destabilizing term
originates from the inertia terms of the NS equations. The (stabilizing) fourth and fifth
terms are due respectively to hydrostatic and capillary (i.e. surface-tension) parts of the
pressure. Finally, the last, odd-derivative term is due to the viscous part of the pressure.
This term is purely dispersive: it does not lead to either growth or decay of the amplitude
of surface deviation 7. Such a term also appeared in the EE obtained by Topper and
Kawahara [49] for an almost vertical plane (naturally, the hydrostatic term was absent in
that equation): they used the small angle of the plane with the vertical as their (single)
perturbation parameter. Our derivation shows their assumption to be unnecessary: For any
inclination 6 (and any value of W), if R is close to R. = 5cot #/4—so that § is sufficiently
small-—then the equation (5) is valid, and its dispersive term is not small; simultaneously,
the hydrostatic term can be large as well (but Y > Z). Without the dispersive term,
the equation of Topper and Kawahara becomes the one obtained by Nepomnyashchy [42],
whose one-dimensional version is the Kuramoto-Sivashinsky equation [35, 46]. All of these
equations are thus limiting cases of our EE (5).

Due to the dissipativeness of the EE (5), the system evolves towards an attractor and
thus essentially forgets its initial conditions. On the attractor, there can be fluctuations,
but no systematic change in time. Then, following the ideas of our earlier papers [3, 19],
the destabilizing inertia term should be of the same order of magnitude as the stabilizing,
capillary one. Hence, the (dimensionless) characteristic lengthscale at large times L, is
estimated to be

Lo = (W/5)'/2.

Similarly, the asymptotic magnitude of the characteristic amplitude A, is determined by
the balance between the nonlinear “convective” term and either the dispersive term or the
capillary one (whichever is larger): A, = max(W/L3, 1/L2). Using these estimates, the
condition (6) can be written as max(W/L3, R/L,, 1/L?) < 1. Noting that W/L3 = §/L,
and R = (5/4)(8 + cot0) > §, we finally can write this as max (R/L,, L;?) < 1. Thus
the validity conditions are

(7) a=1/I2<1 and B=R/L, < 1.

These conditions involve only the basic (time-independent) parameters of the flow. If the
basic parameters satisfy these conditions, the EE (5) is valid (yields a good approximation)
for all time. Hence, these conditions may be termed the global-validity conditions.

We can transform Eq. (5) to a “canonical 7 form-—which would contain a minimum
of “tunable” constants—by rescaling n = N7j, z = L,%, y = Lo¥, and t = T,t. We take
N = W/(6L3) and T, = 3W/26%. Dropping the tildes in the notations of variables, the
resulting canonical form of the small-amplitude evolution equation is

(8) M+ 1Mz + Moz — Ky + Vi + AV, =0,

where kK = cot8/5 and A = 3/VW.
For a small perturbation in the form of a normal mode, n «x exp(st — iwt) expi(jy + kz),
one readily finds—from the linearized version of Eq. (8)—the growth rate s: s
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-k ()2 = () + [1 -2 (j)Z] k% — k*. The streamwise wavenumber k4, corresponding to

the maximum growth rate (at fixed 5) is obtained from 9s/0k? = 0 : it is k2,,, = 1/2 — j2.
It follows that the maximum growth rate sy,q,(k;7) is

(9) Smaz = 1/4 — 2(1 + k).

Thus, Syez is a linearly decreasing function of « for every fixed j. While the scope of linear
stability theory is limited, it is nevertheless helpful in interpreting some of the results of
our numerical simulations of EE (8), as will be seen below.

The way we have derived the above theory is in fact a refinement of the less-formal
version of the multiparametric perturbation approach used in [3, 13, 16, 19]. In the
more formal version of the method (see [13, 14, 16]), one would represent the variables
of the problem as multiple series in powers of two (or more in other physical problems)
independent perturbation parameters, o and ( of Eq. (7) (this is why we call the method
multiparametric). Then the evolution equation and the expressions for velocities and
pressure follow from the leading-order equations for the leading-order coefficients of the
power series. There is no need for this more formal procedure unless one is concerned with
higher-order corrections to the leading-order results.

We note that all the terms of Eq. (8) can be found among the about one hundred
explicitly given terms of an equation obtained by Krishna and Lin [34], who used formal
expansions in a long wave parameter (see also [45]). Our derivation thus establishes that
only a small number of those terms should be included in the equation: All other terms are
negligible whenever the equation can yield a good approximation, i.e. under conditions (7)
or (6).

3 Numerical simulations of evolution PDE

Here we report some preliminary results of our simulations of the dissipative-dispersive
equation (8) with periodic boundary conditions. We believe that the results can be
insensitive to the exact form of the boundary conditions only when the dimensions of the
domain are sufficiently large that it contains many “elementary structures” (for example,
it is known that such simulations give “surprisingly good results” [23] for similar problems
of the boundary-layer wave transitions). Hence, we solved Eq. (8) on extended spatial
intervals, 0 <y < 27p and 0 < z < 27wq, where p > 1 and ¢ > 1.

We used spatial grids of up to 256 x 256 nodes, with the Fourier pseudospectral method
for spatial derivatives and with appropriate dealiasing. Time marching was done (in the
Fourier space) by using Adams-Bashforth and/or Runge-Kutta methods. We checked the
results by refining the space grids and time steps; by verifying the volume conservation,
[ ndydz = 05 etc.

We have used a variety of initial conditions. Some of those were motivated by the
experiments [40]: The inlet conditions of their experiments were modeled by our initial
conditions [see Eq. (12) below].

In the remainder of this section, we discuss results of our numerical simulations,
including (i) the effect of dispersion on the large-time behavior of the film surface near
the attractor; (ii) an investigation of two-dimensional stationary waves and their stability;
and (iii) the effect of varying the wavenumber of the initial “forcing” on the transient states,
in comparison with the experiments of Liu et al. [40].
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3.1 Large dispersion: Unusual 3-D patterns on attractors

The most striking result of our numerical simulations has been a discovery of highly
nontrivial patterns in time-asymptotic states for the strongly dispersive cases of Eq. (8),
A > 1. These self-organized states are reached by the system starting from the small-
amplitude (3-D) white-noise conditions (whereas with the same, random initial conditions
we see no ordered patterns, but just chaos, in the large-time states of the surface in the
case of small dispersion). Invariably, spatial patterns studied up to now in fluid-dynamical
experiments—as well as in solid state physics, nonlinear optics, chemistry, and biology—
were almost periodic, at least locally (see e.g. [9]). In contrast, our results reveal that
patterns of quite a different character can exist on attractors of dissipative-dispersive
systems. The patterns we report here consist of two subpatterns of localized surface
deviations. One of these subpatterns is a V-shaped array of larger-amplitude bulges on
the film surface. Those are surrounded by smaller-amplitude droplets. These constitute the
second, lattice-like subpattern. Each of the two subpatterns spans the entire domain of the
flow. However, the bulge formation moves as a whole “percolating” through the droplet
subpattern (which itself moves as a whole with respect to the solid plate).

Figure 1 shows a snapshot of the film surface at ¢ = 3200, for a film with A = 50 (and
p = q = 16) on a vertical wall (i.e., kK = 0). (There, because of the scaling, the small slopes
are exaggerated.) Figure 2—which presents the evolution of “energy” E o< [n’dydz—
testifies to the fact that by that time the system has approached its asymptotic state in
which there is no further systematic change.  Figures 3(a) and 3(b) show the above-
mentioned two-stream nature of the pattern: The V-shaped formation (consisting of 13
large bulges; see also Fig. 1) moves as a whole with a certain velocity, and the small-
amplitude background moves uniformly as well, but in the opposite direction (in appropriate
reference frames); in addition, the droplet subpattern slowly changes in time. (An especially
clear view of those motions is provided by our computer animations.) We note that one
component of this spatiotemporal pattern, the bulges, have been already discovered in
[48], for A = 25 and p = ¢ = 64/(27). (They simulated a dissipative-dispersive equation
[49] in which the x term of Eq. (8) was absent, since the derivation [49] was based on
a certain—unnecessary, as we discussed above—assumption.) But apparently the authors
of [48] used only contour plots as their graphics tools, and overlooked the second, droplet
subpattern—and thus the entire complex, dynamical character of the two-phase pattern.

One can see in Figs. 2 and 3 the following features: The characteristic lengthscales
for the both subpatterns are ~ 1. The same follows from the requirement [3, 19] that the
destabilizing (third) term of Eq. (8) balances the stabilizing (fourth-order) one so that the
amplitude may remain, on average, constant. However, the amplitude of a bulge chaotically
fluctuates. The amplitude of these fluctuations is approximately equal to the amplitude
of the droplets (~ 10). The amplitude of a large bulge (~ 100 here) is estimated to be ~ X
from the balance between the dispersive and nonlinear terms of Eq. (8).

The V-shaped formation of bulges moves downstream with the velocity (in the moving
reference frame) =~ 4.58U. The observed streamwise velocity of the other, small-amplitude
subpattern is &~ (2 — 8.08)U in the laboratory reference frame. So, this subpattern moves
down the wall if 8 < 1/4, but up the wall otherwise. An order-of-magnitude estimate of the
droplet velocity ¢ can be obtained by balancing the term ¢n, (which will appear in Eq. (8)
as a result of the transition to the co-moving reference frame) with the (large) dispersive
term. Then the amplitude of droplets is estimated from the requirement that the nonlinear
term be of the same order as the (small) dissipative terms. These estimates appear to be
in agreement with what is observed in our numerical simulations. There is a perturbation
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Fia. 1. Snapshot of the pattern on an attractor of Eq. (8) with kK =0 (i.e. the scaled surface
of a film flowing down a vertical plate, here—down the page, with illumination from the top left),
A = 50, and periodic boundary conditions on 0 < y,z < 327: a view in an oblique direction, for
t = 3200.
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Fic. 2. Ewvolution of the surface deviation “energy” [n>dydz from an initial small-amplitude
“white-noise” surface to an attractor of Eq. (8). The snapshots of Figs. 1 and 8 were taken near
the end of this run.
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Fic. 3. (a) Cross-stream view of the pattern shown in Fig. 1. (b) Same as in (a) but after a
time interval At = 0.25. Note that the vertical motion of the V-shaped formation of bulges from (a)
to (b) is in the opposite direction to that of the droplet pattern.

theory of weak interactions (e.g. [4, 11, 30]) for the “pulses” [29] of the 1-D version of
Eq. (8), similar to [22]. However, no analytic solution is available for a solitary 3-D bulge
(we speak in such cases of 3-D structures because the underlying velocity field depends on
all three spatial coordinates; see also [40]), and therefore the prospects for constructing a
similar interaction theory for the 3-D bulges are limited.

Droplets collide with bulges. As a droplet runs into a bulge, the bulge’s amplitude
increases momentarily. Shortly after that, it decreases again while a droplet separates from
the opposite side of the bulge. These interactions are (almost) reversible, like interactions
of KdV pulses [51], and unlike the irreversible coalescences of 2-D pulses discovered in [20]
and [32] for highly nonlinear dissipative equations.

As the value of X for the above simulations is varied (from 0 to 50), the attractor pattern
changes. At small A, we observe chaotic (although 3-D) waveforms. [Note that at A = 0,
the 1-D version of Eq. (8) is the Kuramoto-Sivashinsky equation, which on extended spatial
intervals yields chaotic attractors; see e.g. [9].] For larger A however the ordering effect of
dispersion becomes increasingly evident: The amplitude separation into the bulges and the
background becomes noticeable for A ~ 5, and continues to grow with .

In another set of simulations, with A = 50 and p = ¢ = 16, we vary s from 0 to 50.
For small values of k (< 0.2), the attractor pattern is similar to that discussed above for
k = 0. As k is increased however the film surface becomes more chaotic and the amplitude
of droplets increases up to becoming comparable to that of the bulges. Starting from
k 22 50, the overall pattern has just one phase: it consists of large-amplitude, roughly 2-D
ripples elongated in the y direction. This finds some explanation in the linear theory: The
formation of large-amplitude bulges requires that many spanwise (as well as streamwise)
modes be present. However, as x grows, modes with higher spanwise wavenumbers stabilize
[see Eq. (9)], which suppresses the formation of 3-D bulges.

Similar to Eq. (8), we [12, 18] have derived an evolution equation for a film which
flows down a vertical cylinder. The only essential difference between that equation and
Eq. (8) is the opposite sign of the x term. However, this term disappears in the case of
a vertical planar film, which is also the limit of an infinitely large radius of the cylinder.
Our simulations showed that even for p = 5 the corresponding « term of the annular-film
equation is sufficiently small so that the results essentially coincide with those of the xk = 0
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version of Eq. (8). Thus, the theory leading to Eq. (8) can be checked in experiments
with films flowing down vertical cylinders. The cylinder should be sufficiently long so that
the waves could have time to approach the attractor. One finds that with Ay ~ 1 mm, the
radius ~ 1 cm, and with the conditions (7), in order for the cylinder to be not too long,
the liquid should be sufficiently viscous, in fact several hundred times as viscous as water.
This requirement can be easily satisfied with e.g. a glycerol-water solution. [We note that
one can see a straight row of bulges in the photograph of a film flowing down a cylinder in
Fig. 2 of Ref. [5]; however, the [-condition of validity (7) was not strictly satisfied there.]

Among other results, our simulations confirm that—as had been implicitly assumed
in deriving the global-validity conditions for EE—the solutions of our equation remain
bounded. Furthermore, the amplitude of the solution is of the same order of magnitude as
the estimates obtained by pairwise balance of terms in the evolution equation.

These simulations also demonstrate that the large-time behavior of the solutions of (8)
is essentially insensitive to the initial conditions: The solution evolves toward an attractor
whose nature is dependent on the basic parameters of the system.

3.2 Small dispersion: 2-D stationary waves and their stability

During our numerical simulations with one- and two-frequency forcing, we have observed
2-D stationary waves which are stable to 3-D disturbances at certain wavenumbers of the
primary forcing. For wavenumbers k& between 0.5 and 1.0, these stationary waves consist
mainly of the fundamental and a few of its stable overtones at smaller levels. Such stationary
waves for different film evolution equations were constructed by many researchers (e.g.
[10, 25, 41, 50]; it seems however that most of the huge number of such stationary solutions
are very unstable, and only few of them are observed in experiments—only when artificial
forcing is present at that). In the wavenumber range 0.5 < k < 1, the stationary waves
can be well approximated as two-mode equilibria consisting of the unstable fundamental
and the stable overtone. In the absence of dispersion, approximating n as the Fourier series
truncated at the Nth member,

N
(10) n(z,t) = > An(t)e™ + c.c.,

n=1

one obtains from Eq. (8), for N = 2, the Galerkin system dA,/dt = s;A; — ikA] Az
and dAs/dt = soAs — ikAy Ay, where s, = n?k%(1 — n?k?). Hence, at a stationary state
(0Ay, /0t = 0), assuming A; to be real, one finds

A1:\/81|82|/k; Agz—isl/k.

Our numerical simulations have indeed resulted in stationary waves with mode amplitudes
and phase relations similar to that given by the above expressions.
Similarly, including the third harmonic, so that ny = E;o;:l Ane™z 4 c.c., we find for
the stationary wave
59X A? 3k? A3

A= o Ay =ik , Az =-——
PRI —6X/ss) 2T e+ (6k2/s3) AT 0T sy [sg + (6k2/s3) A7]

(in the reference frame where A; is positive), where X = —s3/6 +1/64/s3 — 12s153. While
the amplitude of the additional mode is small in comparison with that of A; and A, its
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w0y
o

-01

Fic. 4. (a) Growth rate (for the values of K shown in the legend) and (b) the streamwise
Bloch’s wavenumber of the fastest-growing Bloch’s mode [see Eq. (11)] of the secondary instability
for k =0.56 (A =0.057).

inclusion makes the agreement with the numerically found stationary waves even more
close. For a small disturbance which is a normal mode of the Bloch type (introduced a long
time ago for the stationary wavefunctions of an electron in the periodic field of the crystal

lattice; see e.g. [36]),
!
) H ~ PRIV S g imkz

m=—1

one obtains, after substituting n = no+ H into Eq. (8) and linearizing it, an eigenvalue
problem for P. (This is the so-called Floquet analysis—which was applied to film waves
in [8], and was used earlier in other hydrodynamic problems, see e.g. [23, 31]. We
believe Bloch’s rather than Floquet’s name is more appropriate in this context; see e.g.
[15, 21, 47]). The eigenvalues P = P, + iP; were found by solving the eigenvalue problem
numerically. The number of modes [ in the Fourier series truncation (11) was increased
until the eigenvalues converged within an acceptable accuracy. We are interested only in
the eigenvalue whose real part is maximum. This maximum real part G = max P,—the
growth rate of the instability—is shown as a function of the primary wavenumber &k in
Fig. 4(a), for three different values of the parameter k. The corresponding value of the
streamwise Bloch’s wavenumber K at which the maximum growth occurs is shown in Fig.
4(b) for the intermediate value k = 0.56 (which value corresponds to the parameters of
some of the experiments of [40]). One sees from Fig. 4(a) that for the case of a vertical
plane—as was already noted in numerical studies by Chang et al. [7]—there are no 2-
D stationary waves stable to 3-D disturbances. However, we find that, as s increases
from 0, a window of wavenumbers appears over which 2-D stationary waves are stable
to all disturbances, including the 3-D ones. The window reaches its maximum extent at
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Emn (arbi(’)rr:ry units)

Fic. 5. Evolution of the Fourier-mode energies of the surface deviation starting from the
general forcing initial condition, Eq. (12) (k = 0.56, A = 0.057;p = 8,q = 47), and into a stationary-
wave state. The only modes noticeable are the fundamental (m = 0,n = 36; the solid line) and its
first overtone (m = 0,n = 72); other modes never reach an appreciable level of energy.

k = 1.55 and remains the same for all k > 1.55, in which domain of x the most unstable (or
least stable) disturbances are two-dimensional. Since the x term of our Eq. (8) vanishes
for the streamwise disturbances, the curve in Fig. 4(a) characterizing the stability to all
disturbances for x > 1.55 coincides with the one which deals with only 2-D disturbances in
the case of a vertical film, x = 0, shown in Fig. 5 of Ref. [7].

Our numerical simulations have confirmed the existence of the island of stability. To
obtain the stationary waves, we have used “one-frequency-forcing” initial conditions, i.e.
those with one dominant fundamental Fourier mode (which was 2-D, streamwise). Its
harmonics, the first oblique subharmonic, and noise were present at smaller levels. In Fig.
5 we show the evolution of the “energies” E,,, of the Fourier modes, defined as

2
Em,n :| Amn |
where a,y,;, is the Fourier coefficient:
n= Z A€ (MY/PAN2/ Q)

In this simulation with p = 8 and ¢ = 47, the initial condition was of the form

(12) n(y,z;t =0) = Ajcos(nsz) + Aplcos(2nsz — ¢1) 4+ cos(3nsz — ¢o)]
+Ap[cos(npz — ¢3) + cos(2nzZ — ¢pu) + cos(3nsz — ¢5)] cos g
+Aup[cos(0.5n 2 — ¢g) + cos(0.5npZ — ¢pr) cos 7]

+small white noise,

with Ay = 1.2, Ay, = Agyp = 0.05, ny = 36; in (12), § = y/p, Z = 2z/q, and ¢; are
independently generated random phases. The only modes noticeable in Fig. 5 are the
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Fia. 6. Evolution from a 2-D “white-noise” initial condition (k = A = 0;q¢ = 16). (a) Total
energy and (b) energies of the most active Fourier modes (the number shown in the legend next
to each line is the corresponding value of n; note that the n = 11 mode is the fastest-growing one

according to the linear theory).
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Fia. 7. Ewvolution from a 3-D white-noise initial condition (k = 0.0,A = 0.0;p = 8,¢ = 16).
(a) Evolution of combined energies E,, = Y Ep n for the three lowest values of m (indicated in
the legend). (b) Energies Eo,, of the streamwise (m = 0) Fourier modes for t = 32 (the solid line is

a guide to the eye).
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fundamental (m = 0,n = 36) and its first overtone (m = 0,n = 72); other modes never
develop. Also, we observed in our simulations that the addition of “white noise” into the
initial condition does not prevent the system from attaining the stationary state, provided
the signal (i.e. the amplitude of the primary forcing) is at least an order of magnitude
larger than the noise.

For those wavenumbers not inside the stable window, it is still possible to obtain quasi-
stationary waves, when the initial forcing contains only one frequency. We found that the
“Floquet” growth rate depicted in figure 4(a) is capable of giving some estimate of the
lifetimes of the quasiequilibria. However, this linear stability analysis is of limited use: It
often fails to predict what patterns emerge as a result of instability, because the system
quickly reaches a nonlinear stage which can bring to prominence modes other than those
dominating the initial stage of instability.

Finally, our numerical simulations with the 2-D (Fig. 6) and 3-D (Fig. 7) “white-noise”
initial condition never yielded any stationary (or even quasistationary) waves. After the
stage of initial exponential growth [see Fig. 6(a)], near the maximum of the total “energy”
E=5%mEnn (which is proportional to the spatial average of n?), the fastest-growing
mode of the linear theory is definitely the one that is dominant [see Fig. 6(b)]. For some
limited time (around ¢ ~ 65) the maximum shifts to higher wavenumbers. The latter
however still fall short of the stability window—in which this maximum should have ended
according to the spirit of the interesting transition scenarios suggested in [6, 7, 8] (for a
different model of film waves. On the experimental side, there seems to be little evidence
that such a shortening of the characteristic wavelength does occur.) Gradually, as the
total energy fluctuates considerably around its average level [see Fig. 6(a)], the energy
spreads wider and wider over the spectrum of modes, while the film surface evolves from a
quasi-sinusoidal state to a fully chaotic one.

3.3 Small dispersion: Transient patterns and physical experiments

While the large-time behavior of the film is insensitive to the initial conditions (see
subsection 3.1), the transient states are dependent on the initial condition (unless the latter
is a predominantly monochromatic forcing of type (12) with the fundamental wavenumber
in the window of stability). For different initial conditions, the film surface exhibits a
variety of patterns. Our study of the transient states has been primarily motivated by the
recent experiments of Liu et al. [40]. They perturbed the flow at its inlet with sinusoidal
pressure variations at a fixed frequency f. In addition to this single frequency “forcing”,
in some of their experiments, a secondary forcing at the subharmonic frequency f/2 was
used. The amplitude of the secondary forcing was considerably smaller than that of the
primary one. (The motivation for using the secondary forcing was to enhance any broad-
band subharmonic resonances). We modelled this inlet forcing by the initial conditions of
type (12), with A, < Ay and Ay, < Ay.

In addition to the initial conditions, we have also been motivated by the experiments
of Liu et al. in the selection of values of the parameters x and A for our simulations. One
can see that the values k = 0.56 and A = 0.06 we used in most cases are fairly typical of
the experiments of Ref. [40]. We again point out that values of parameters (R, W, and
) in those experiments lie outside the domain of validity of Eq. (8) [there exist however
many other sets (R, W, ) which lead to the same values of A and &, and at the same time
do satisfy the validity conditions (7)].

When the wavenumber of primary forcing (k) is close to the neutral wavenumber, and in
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Fia. 8. Subharmonic interaction of Fourier modes in a run with the initial condition (13)
whose frequency of primary forcing is close to the neutral one (¢ = 16,ny = 15). (a) Evolution of
energies of the principal Fourier modes (the numbers shown in the legend next to each line are the
corresponding values of m and n, in this order). Note that since ny is an odd number, there are two
“almost-subharmonic” modes, one with n = 7 and the other with n = 8. (b) Checkerboard pattern of
the film surface for t =21 (c.f. Fig. 12 of [40]). The interval between two neighboring isothickness
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Fic. 9. Similar to Fig. 8 but for a run starting from the general initial condition (12), with
q =47 and ny = 46. Note that the checkerboard-like pattern in (b) is not perfect, but the streamwise
period-doubling is clear (t = 14.6; only one quarter of the streamwise extent of the periodicity domain

is shown; the interval between two neighboring isothickness contours is 0.6).
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Fia. 11. “Solitary wave” pattern in a run with a low-frequency forcing (the initial condition
(12), with ¢ = 47 and ny = 4; £ = 0.56, A = 0.057). (a) Evolution of energies of some principal
Fourier modes (the numbers shown in the legend next to each line are the corresponding values of
m and n, in that order). (b) The wave profile at t = 19.3. Only a part of the train of four solitary

waves is shown (c.f. Fig. 2(b) of [40]).
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the presence of secondary forcing at the subharmonic frequency [i.e. Agyp # 0 in Eq. (12)],
the oblique subharmonic interacts very strongly with the fundamental. This is illustrated
in Fig. 8 for an idealized initial condition,

(13) n(y,zt =0) = Ay cos(nsz) + Agyp cos(0.5nrZ) cos i

with Ay = 1.2, Ay, = 0.05, and ny = 15 (while ¢ = 16). Figure 8(a) shows the
strong interaction with the exchange of energy between the fundamental and the oblique
(detuned) subharmonics. The surface exhibits checkerboard patterns such as the one in
Fig. 8(b), which is seen to resemble the checkerboard pattern of “cat eyes” in Fig. 12 of
Ref. [40]. With the full initial forcing (12) however other modes become significant, as is
evident in Fig. 9(a), and while the period doubling is obvious, the chekerboard pattern in
Fig. 9(b) is not perfect. Indeed, the characteristic property of the oblique subharmonic
cos(nyZ/2 4+ ¢)cosy which is responsible for the checkerboard structure, its invariance
under the transformation (Z,9) —(Z 4+ 2m/ny, § + m), is readily seen to be not shared by
such modes as the fundamental oblique cosn sz cosy and the second oblique subharmonic
cos(nsz/2)cos2y. The latter modes thus spoil the perfect checkerboard pattern. The
property of period-doubling however is very robust provided the forcing is sufficiently close
to the neutral wavenumber. As the forcing wavenumber decreases from the neutral, the
intensity of the interaction between the fundamental and the subharmonic decreases. These
observations are in qualitative agreement with the experimental results of Liu et al. [40].

With one-frequency initial forcing at wavenumbers below the stability window, we
observe evolution similar to the “synchronous instability” of experiments [40]. For the
run shown in Fig. 10(a), the values generated by the parameters of the corresponding
experiment were Kk = 0.18 and A = 0.05. One can see that oblique modes with m = 2
become important, and a quasi-stationary 3-D state develops when the noise level in the
initial condition is low. The resulting film surface pattern shown in Fig. 10(b) looks similar
to the one in Fig. 18 in [40]. Eventually, the patterns yield to chaos. We note that the
appearance of synchronous patterns and their exact nature is dependent on the harmonic
and noise content in the initial conditions. If the initial condition has a subharmonic
component, i.e., Agy 7 0 in (12), the synchronous patterns appear in combination with
period-doubling patterns. At even lower wavenumbers of the one-frequency forcing, the
flow develops solitary wave-like transient patterns [see Fig. 11]. These patterns resemble to
some degree the patterns in Fig. 2 of Ref. [40] obtained at low-frequency forcing (however,
the experimental solitary waves seem to have large amplitudes and are likely to be strongly
nonlinear).

Thus, the solutions of Eq. (8) qualitatively reproduce the experimentally observed types
of transient patterns on inclined films, along with the correspondence of the pattern type
to the forcing frequency.

4 Conclusion

By using the multiparametric perturbation approach, we have developed a theory of a
wavy film flowing down an inclined plane. It includes an evolution PDE for film thickness
and explicit expressions for pressure and velocities in terms of its solutions, as well as
conditions of validity (both local-validity and global-validity ones). We argued that the
PDE (4) for the film thickness is the most general equation derivable (from the full Navier-
Stokes problem under consideration) as a rational, well-controlled approximation. For
large-amplitude waves the approximation [and the Benney equation which is a particular
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case of our equation (4)] cannot be good uniformly for all time. We pointed out however
that Eq. (4) has a chance to avoid explosive solutions and thus can be preferable to
the Benney equation as a qualitative model for the large-amplitude waves. In contrast,
the small-amplitude evolution equation (8) is valid for all time provided the parametric
conditions (7) are satisfied.

The numerical simulations of this equation in the case of large dispersion reveal unusual
spatiotemporal patterns on the system attractors. These nonstationary 3-D patterns
are highly organized but differ from other patterns which have been usually studied in
nonequilibrium dissipative systems: the new patterns are not simply periodic, even locally.
The patterns we have found consist of two subpatterns which percolate through each other
(each subpattern by itself is almost stationary; one of them is essentially nonperiodic, but
both are highly ordered). Experiments which would satisfy the conditions of validity of our
theory require highly viscous liquids, such as glycerol and its water solutions.

For the parameters of the recent experiments [40], preliminary results of our simulations
are in qualitative agreement with the 3-D transient patterns observed in those experiments:
subharmonic interactions and checkerboard patterns at near-neutral frequencies of forcing,
synchronous (i.e. with no period-doubling) transverse deformations of waves at intermediate
frequencies, and solitary waves at low frequencies. This is despite the fact that the
experimental parameters are somewhat outside the domain of guaranteed validity of our
theory. We have also observed the formation of stationary waves for a certain range of
forcing frequencies which has been also obtained theoretically.

While the validity of the evolution equation is obviously more limited than that of
less drastic simplifications of the full Navier-Stokes problem, evolution equations have the
advantage of being much more amenable to numerical simulations and theoretical studies.
Results obtained for small-amplitude equations—derived as well-controlled approximations
with known conditions of validity—might lead to insights useful for the studies of even
large-amplitude waves on flowing films.

We are grateful to Mr. I. Yakushin, Dr. A. Minga, and Mr. X. Zhang for technical
assistance. We have used the computing facilities of the Alabama Supercomputer Authority
and the National Energy Research Supercomputing Center of the Department of Energy.

A The full NS problem

In a coordinate system moving with a velocity V' in the z-direction, the Navier-Stokes (NS)
equations in the dimensionless form are (see e.g. [2])

(14) Up + Uty + VUy + wuy — Vu, = —py — 2c0t 0/ R + (Ugy + tyy + uz2) /R,
(15) U+ uvg + vy + W, — VU, = —py + (Vga + Vyy + 022) /R,

(16) wy + uwy + vwy + ww, — Vw, = —p, + 2/R + (wgy + wyy + w,,)/R.

The continuity equation is
(17) Ug + vy +w, = 0.

The boundary conditions are as follows. The no-slip conditions at the surface are
(18) u=v=w=0 at z=0.
The tangential-stress balance conditions at the free surface are

(19) p11hy + p12[l — hy®] — p1shyhs — paohy — pash, =0,
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(20) piihe + pia[l — h,?] — prohyh, — pashy — pazh, = 0.
The normal-stress balance condition is

(21) [p11 + pazhy® + pssh.” — 2p1ohy + 2pashyhs — 2pisho][1 + hy® + 22 =
Whyy {1 + h2?} + b {1 + hy®} — 2hyhhey]

where the stress components are

(22) pii = —p+2uz/R  pi2 = (uy +v)/R,
P2 = —p+2vy/R P23 = (v; + wy)/R,
P33 = —p+2w,/R P13 = (uy + wy)/R.

Finally, the kinematic condition at the free surface is

(23) hi +vhy +wh, —Vh, = u.

B Expressions for velocity corrections
The expressions for the velocity components v, wy, and u; in terms of h are

:ES

(24) vo= —Thy —a [Byhe + hhay + W (V2h), - cot Oh, |

+3 [8hhyhs + 4h?hey + 2hW (V2h), — 2hcot Ohy |,

Tt

3
(25) w = G Rhh: — "% [V2h + he. + 2Rh.]
+a? [—hhzz + cot Oh, — W (V2h), — hzhz]

ta [h2v2h + 4h2h,, — 2 cot Ohh, + 2Wh(V2h),

2
+2Rh%h, — §Rh4hz +10hh,h, + 2hhyhy]

3
+ (‘% _ h%) Rh,,

fI;5 .’,E4
(26) uy = _%R(hhz)z + 6 [(VQh)z + haz]

x> 1 2,19 2 4
+§ {iv (h?), —cot OV h + WV h}
_%2 {(mv?h)z +4 (hZh”)z — 2cot @[(hh;), + (hhy)y]

o2 () 4 (157 | 28 (190), = TR (),

+10 (hh.?) +2(hhy?) +8(hhyhs), +4 (h%y)y}

(II4 :E2
— 5 Rhuz + 7R(h2ht)z .
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