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Mutually penetrating motion of self-organized two-dimensional patterns of solitonlike structures
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Results of numerical simulations of a recently derived most general dissipative-dispersive partial differential
equation describing evolution of a film flowing down an inclined plane are presented. They indicate that a
novel complex type of spatiotemporal patterns can exist for strange attractors of nonequilibrium systems. It is
suggested that real-life experiments satisfying the validity conditions of the theory are possible: the required
sufficiently viscous liquids are readily available.@S1063-651X~97!00401-7#

PACS number~s!: 05.45.1b, 47.20.Ky, 03.40.Gc
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The phenomenon of pattern formation in nonequilibriu
dissipative systems is currently a topic of active experim
tal and theoretical research~see, e.g.,@1# for a recent
progress review!. Here we report our theoretical studies a
numerical simulations of a two-dimensional~2D! evolution
partial differential equation~PDE! approximating a flow
down an inclined plane; it exhibits self-organization of
remarkably complex spatiotemporal pattern which then p
sists indefinitely in this dissipative-dispersive system. In c
tain cases discussed below, such a pattern consists of
subpatternsof two-dimensionally localized surface stru
tures. One of these subpatterns is an essentially 1D arra
ment of larger-amplitudebulgeson the film surface which
are nearly equidistantly aligned on~a number of! straight-
line segments; those are surrounded by smaller-ampli
bumps, which constitute the second, latticelike subpatte
filling up essentially the entire flow domain. Each of the tw
subpatterns moves as a whole; their velocities are differ
and every elementary structure~a bulge as well as a bump!
periodically collides with those of the other kind. In the co
lision of a bump with a bulge~or with a pair of neighboring
bulges!, the two structures pass through each other simila
to the well-known 1D Korteweg–de Vries solitons, returni
to their precollisional shapes and speeds after the interac

Studies of wavy film flows on solid surfaces~the
‘‘Kapitza problem’’! have a considerable history. Howeve
the nonlinear dynamics of wavy films is far from being ful
understood~see, e.g.,@2#; see@3,4# for recent progress re
views!. Fortunately, the nonlinear coupled-PDE Navie
Stokes~NS! problem, additionally complicated with a fre
boundary, can be reduced to simplerapproximatedescrip-
tions of the wave dynamics for certain domains of the
rameter space. In the most favorable cases, such a des
tion reduces to asingle partial differential equation
governing the evolution of film thickness. Recently, we~see
@3#! have derived the most general evolution equation~EE!
capable of all-time-valid description of a wavy liquid film~of
a constant densityr, kinematic viscosityn, surface tension
s, and average thicknessh0) flowing down an inclined
plane. Its dimensionless form is

h t14hhz1
2
3dhzz2

2
3 cotuhyy1

2
3W¹4h12¹2hz50.

~1!
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Here h is the deviation of film thickness from its averag
value of 1,z andy are the streamwise and spanwise coor
nates, and ¹25]2/]z21]2/]y2. We have defined
d[(4R/52cotu), whereu is the angle of inclination of the
plane and R5h0U/n is the Reynolds number. Her
U5gh0

2sinu/(2n) whereg is the gravity acceleration, and i
Eq. ~1! W5s/(2rnU) is the Weber number. All the dimen
sionless variables are measured in units based onh0 , U, and
r. Equation~1! describes the film evolution in a referenc
frame moving with the velocity 2U in the streamwise direc
tion.

In this paper we limit ourselves to the case ofu5p/2,
i.e., flow down a vertical wall. Then, we can transform t
EE to a ‘‘canonical’’ form which will contain onlyonecon-
trol parameter—by rescalingh5Nh̃, z5Lz̃, y5Lỹ, and
t5Tt̃, where N52R/(5W), L5A5W/(4R), and
T5(53/2/16)(W/R)3/2. Dropping the tildes in the notations o
variables, the resulting canonical form of the EE is

h t1hhz1¹2hz1e~hzz1¹4h!50. ~2!

The control parameter in this equation is

e5~1/3!A4WR/5. ~3!

Equations~1! and~2! have beenderiveddirectly from the
fundamental NS equations by using an iterative proced
which is a variation of the so-called multiparameter pert
bation approach~see, e.g.,@5,3#, and references therein; a
earlier, more limited application of multiple independent pe
turbation parameters appears, e.g., in@6#!. In addition to its
leading to the most general EE, another advantage of
technique is that it yields the least restrictive conditions
theory validity. For the present case, they require that
following two dimensionless parameters beindependently
small:

a[AR/W!1 and b[AR3/W!1. ~4!

From the linear stability theory, the third~third-order de-
rivative! term of Eq.~2! is purely dispersive, while all othe
linear terms are dissipative. Different limiting cases of E
~2! reproduce some known nonlinear equations, such as
2D version of the Korteweg–de Vries~KdV! equation for
e→0 and the 2D version of the Kuramoto-Sivashinsky~KS!
equation fore→` ~see also@7#!. The 1D limit (]y50) of
1174 © 1997 The American Physical Society
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55 1175BRIEF REPORTS
Eq. ~2! is essentially the well-studied~see, e.g., references i
@8#! equation introduced by Kawahara@9#.

To exhibit interesting spatial behavior, a system should
sufficiently ‘‘large.’’ For the periodicity domain
0,y<2pp, 0,z<2pq in our simulations of Eq.~2!, we
chose 5<p<16 and 16<q<80. We used spatial grids of u
to 32p332q nodes, with the Fourier pseudospectral meth
for spatial derivatives and with appropriate dealiasing. Ti
marching was done~in the Fourier space! by using Adams-
Bashforth and/or Runge-Kutta methods. We checked the
sults by refining the space grids and time steps; by verify
the volume conservation,*hdydz50; etc. A typical simu-
lation run took;106 time steps.

The initial values ofh were chosen independently at ea
node from the interval@20.05,0.05# with uniform probabil-
ity distribution. Due to the dissipativity of Eq.~2!, the system
evolves to an attractor, and so essentially ‘‘forgets’’ the i
tial conditions. For large values of the ‘‘dissipativity’’ pa
rametere@1, as soon as the flow approaches its asympt
state, the observed film surface is irregular in space and t
no spatial patterns are evident. The chaotic character of
attractor is indicated by thepositive largest Liapunov expo-
nent @which we found, similar to Deissler@10#, by numeri-
cally integrating, along with Eq.~2!, the linear equation tha
governs small disturbances of the solution of Eq.~2!#. This is
in accordance with the fact that in the limite→`, Eq. ~2!
reduces to a 2D generalization of the Kuramoto-Sivashin
equation, whose solutions on extended spatial domains
known to exhibit chaotic attractors. Regarding the transi
behavior on the way to the attractor, our simulations of E
~2! with smalle corresponding to the parameter values of
experiment@2# have shown agreement@3# with their tran-
sient‘‘3D’’ patterns and pattern transitions, including chec
erboard patterns, synchronous instabilities, and soli
waves.

The main focus of the present paper is the presenc
highly nontrivial orderly patterns in time-asymptotic stat
for thestrongly dispersivecases,e!1. Figure 1 shows snap
shots of the film surface at large times for three different s
of parameter values.„The fact that by those times the sy
tems have approached their asymptotic states is clear,
from the corresponding plots of the evolution of ‘‘energy
*h2dydz @see Fig. 2 corresponding to Fig. 1~a!#. We will
speak of such numerically identified time-asymptotic sta
as attractors, although one needs to be cautious here: i
known that such extended systems may sometimes ex
long transients. We find the largest Liapunov exponent to
positive in this case as well, suggesting astrangeattractor.…

There are two subpatterns in Fig. 1~a!: TheV-shaped for-
mation consisting of 13 large-amplitude bulges aligned i
two straight lines moves as a whole downstream with a c
tain velocity, and the small-amplitude latticelike subpatte
of bumps moves uniformly as well, but in the opposite~in
our reference frame! direction.@Similar segregation of coher
ent structures into two subpatterns of different amplitude
also seen for the nonsquare, large-aspect-ratio domains,
1~b! and 1~c!.# This collision-course movement is evident
the cross-sectional space-time portrait shown in Fig. 3. E
though each bump changes its shape in irregular manner
bump maintains its identity. In particular, the bumps do n
seem to coalesce or break up, and just weakly interact w
e
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one another. Also, the height of a bulgeirregularly fluctu-
ates, by an amount which is approximately equal to the a
plitude of the bumps.

As a bump runs into a bulge, the bulge’s amplitude
creases momentarily, and then decreases again as a b
separates from the opposite side of the bulge~see Fig. 3!.
These interactions, unlike the irreversible coalescences o
pulses—discovered in@11# for a highly nonlinear dissipative
equation—appear to be~almost! reversible, like the well-
known interactions of 1D KdV solitons.

We note thatbulge formations similar to that of Fig. 1~a!
were discovered in@7# for e21525 andp564/(2p) @they
postulated an equation of the form~2! based on an equatio
of the form ~1! derived in Ref.@12# for a partial case of an
inclined film; in fact, that derivation wasnot valid for the
verticalfilm#. But the authors of@7# seem to have overlooke
~perhaps, because of inadequacy of the graphics tools

FIG. 1. Snapshots of the time-asymptotic film surface se
organized in simulations of Eq.~2!, for three different cases~bulges
move down the page here; for convenience of presentation, di
ent axes may have different scales; in reality, all ‘‘bulges’’ a
‘‘bumps’’ have small slopes and are nearly axisymmetric!. ~a!
p5q516, e21550, and t51.63105; ~b! (p,q)5(16,80),
e21530, and t55.983104; ~c! (p,q)5(5,60), e21525, and
t54.893105.

FIG. 2. Evolution of the surface deviation ‘‘energy’’*h2dydz
from an initial small-amplitude ‘‘white-noise’’ surface to an attra
tor of Eq.~2!. The snapshot Fig. 1~a! was taken near the end of thi
run. Note that the time unit here is 50 times that of Eq.~2!.
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1176 55BRIEF REPORTS
used! the second, bump subpattern—and thus the entire c
plex, dynamical character of the two-component order.

It is natural to inquire as to how the various quantities
the pattern scale withe. We variede21 between 25 and
305 forp5q516. In one set of simulations,e21 was gradu-
ally decreased from 50 in relatively small steps of 5~to allow
the system to ‘‘adiabatically’’ adjust to the new parame
value!, up toe21525—at which point the line formations o
bulges break down. In another set of simulations,e21 was
increased from 50 in steps of 10 or 15 up toe215305. In all
cases, we find that the characteristic width of the bulge
well as the bump is of the order of (;) 1 independent of
e. The amplitude of bulges is also constant,;1, as are the
velocity of bulges and that of bumps. Only the amplitude
bumps changes; it scales as;e.

The V-shaped formation of bulges retains its form wh
e is changed from 1/30 to 1/305. However, the~absolute
value of the! anglew of each bulge line with the streamwis
axis decreases withe, probably approaching some asym
totic value in the limite→0 ~see Fig. 4; since there are n
parameters remaining in this limit, the asymptotic an
should be just 0). It might be possible to explain this dep
dence by a theory of pairwise interaction of bulges throu
their ~nonaxisymmetric! ‘‘tails’’ ~similar to the theory@13#
for 2D chemical-wave spirals!.

Whene!1, the dissipative terms in Eq.~2! can be treated
as perturbations;e of the 2D KdV equation

h t1hhz1¹2hz50. ~5!

This equation does not seem to have any analytical soluti
However, by transforming to a reference frame moving w
a velocity c.0 @replaceh t with (2chz) in the equation#,
Petviashvili and Yan’kov@14# numerically obtained a sta
tionary axially symmetric solitary-wave solution. By balan
ing the first term with the nonlinear term,chz;hhz , and the

FIG. 3. Time sequence of instantaneous surface profiles
fixed vertical cross section normal to the film~for p5q516,
e21550; the time shown as 0 is in fact 1.63105 counting from the
start of the run!. In particular, it is evident that the~large-amplitude!
bulges move in one direction and~small-amplitude! bumps in the
opposite direction.
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latter term with the dispersive term, the characteristic am
tude and velocity of these solutions are found to beh;c and
c;1/Ls

2 whereLs is the characteristic length scale, which
not uniquely determined by the KdV equation~5!. However,
the two dissipative terms of Eq.~2! will changeLs on a slow
time scale, until they balance each other~this essential role
of the small dissipative terms was revealed in Ref.@9# for the
1D case!. This selects the soliton ofLs;1, which results in
c;1 andh;1 as well, independent ofe. These estimates
are clearly consistent with the numerical results for bulg
reported above.

Motivated by the discovery of the second, sma
amplitude subpattern, we examined the possibility of a c
responding second traveling-wave solution. If we transfe
the frame moving with anegativevelocity c52a2, where
a is a~real! constant, there are such solutions—with the no
linear term being as small as the dissipative ones. Indeed
leading-order equation then is¹2hz1a2hz50, which is the
well-known Helmholtz equation forhz . There are solutions
}sinJysinKz (J21K25a2). The balance between the~small!
dissipative terms again determinesK;c;1, and the balance
of the dissipative terms with the nonlinear term yiel
h;e. We see that these length scale, amplitude, and velo
~including its sign! agree with those observed for the bum
in the numerical experiments as described above. Note
our assumption of thenegativevelocity is essential: with a
positive velocity, one arrives at themodified Helmholtz
equation, which does not have any oscillating solutio
There are onlyexponentialsolutions, which are unsuitabl
here.@We note that the Helmholtz equation has axially sy
metric solutions as well,}J0(ar) where J0 is the Bessel
function (r is the radial coordinate!. This solution is only
weakly localized: it decays at spatial infinity as a pow
rather than exponentially. There is no such localized solut
in the 1D case,]y50.#

One would naturally like to find some known types
patterns to which those reported here can be compa
There are several known cases~see, e.g., Ref.@15#, and ref-
erences therein! of indefinitely longcoexistenceof different
types of patterns. However, in those cases each of the c

a FIG. 4. Anglew between~each! line of bulges and the stream
wise direction varies withe (p5q516).
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55 1177BRIEF REPORTS
isting patterns is confined to its own spatial region: its co
stituent structures do not penetrate inside any ‘‘alien’’ p
tern region. In contrast, we have seen that the bum
constantly pass through the region of bulges. Another po
bility would be to look at the bulges and bumps as tw
traveling waves. However, in contrast to usual cases,
bulge ‘‘wave’’ is confined to an essentially 1D region, an
there is a constant nonlinear interaction with the wave
bumps.

Similar to Eq.~2!, we have derived an equation for a film
flowing down a verticalcylinder ~see Ref.@3# and references
therein!. In particular, one can see that if the~dimensionless!
radiusb of the cylinder is not too small (b@b21), the flow
is well approximated by the planar-film equation~1!. ~With
periodic boundary condition in the azimuthal direction; w
note that this also justifies our use ofspanwise-periodic BCs
in the numerical simulations. As to the streamwise BC,
believe the solution becomes essentially insensitive to t
specific type in the limit of large aspect ratioq/p, as, e.g., in
Fig. 1. It would be interesting to check this with spatia
evolution simulations, such as those already conducted@16#
for a different EE that coincides with the nondispersive lim
of the above-mentioned EE@3#.! One finds that withh0
;1 mm, the cylinder~dimensional! radius b̄;1 cm, and
under parametric conditionsa!1, b!1, ande!1, for the
waves~evolving as they propagate from the entrance end
not-too-long a cylinder to its exit end! to have enough time
for approaching the attractor stage, the liquid should be s
eral hundred times as viscous as water. For example, it c
be glycerin with an admixture of water.
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As a general conclusion, numerical 2D simulations o
realistic evolution PDE signal that nonequilibrium dissip
tive systems can spontaneously formnonperiodic, but never-
theless highly ordered spatial patterns~of compactly local-
ized, solitonlike structures! which are of a remarkable
complexity. In particular, the novel patterns consist
subpatterns—each of a different amplitude and each movi
as a whole with its own velocity,penetratingthrough one
another. Thus these subpatterns coexist as the consti
components of the overall—microscopicallynonsteadybut
macroscopically permanent—self-organized spatiotemp
order characteristic of the system motion on such an att
tor.

The particular dissipative-dispersive PDEs~1! and ~2!
have been consistently derived from the full Navier-Stok
problem to provide a controllably close approximation to t
evolution of a liquid film flowing down a vertical plane. Th
unconventional perturbative approach used in this deriva
has the advantage of yielding the least restrictive conditi
of the validity of the theory. To satisfy those validity cond
tions for a possible~terrestrial! experiment designed to ob
serve patterns of the novel type on a film flowing down
vertical cylinder, the film liquid should be much more vi
cous than water; fortunately, suitable liquids are read
available.
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