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Mutually penetrating motion of self-organized two-dimensional patterns of solitonlike structures
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Results of numerical simulations of a recently derived most general dissipative-dispersive partial differential
equation describing evolution of a film flowing down an inclined plane are presented. They indicate that a
novel complex type of spatiotemporal patterns can exist for strange attractors of nonequilibrium systems. It is
suggested that real-life experiments satisfying the validity conditions of the theory are possible: the required
sufficiently viscous liquids are readily availab[&1063-651X%97)00401-7

PACS numbegps): 05.45+b, 47.20.Ky, 03.40.Gc

The phenomenon of pattern formation in nonequilibriumHere 7 is the deviation of film thickness from its average
dissipative systems is currently a topic of active experimenvalue of 1,z andy are the streamwise and spanwise coordi-
tal and theoretical researctsee, e.g.,[1] for a recent nates, and V?=4%/9z2+3%/9y>. We have defined
progress reviey Here we report our theoretical studies and 5= (4R/5— cotd), where 6 is the angle of inclination of the
numerical simulations of a two-dimension@D) evolution  plane and R=hy,U/v is the Reynolds number. Here
partial differential equationPDE) approximating a flow ;_ gn2sing/(21) whereg is the gravity acceleration, and in

down an inclined pIane;_|t exhibits self-organ[zatlon of aEq.(l) W= o/(2pvU) is the Weber number. All the dimen-
remarkably complex spatiotemporal pattern which then per-. . ; .
sionless variables are measured in units based,otJ, and

i<t indefinitely in thie dissinative-di ) In cors \ . . bas:
sists indefinitely in this dissipative-dispersive system. In cer Equation(1) describes the film evolution in a reference

tain cases discussed below, such a pattern consists of t . ih th loci i th ise di
subpatternsof two-dimensionally localized surface struc- ''ame moving with the velocity @ in the streamwise direc-

tures. One of these subpatterns is an essentially 1D arrangté‘—)n' , .

ment of larger-amplitudéulgeson the film surface which _ N this paper we limit ourselves to the case &f w/2,

are nearly equidistantly aligned da number of straight- ie., flovv“down a vsrtlcal WaI_I. Th(_an, we can transform the

line segments; those are surrounded by smaller-amplitudgE © @ “canonical” form which will contain onlyonecon-

bumps which constitute the second, latticelike subpattern©! _parameter—by rescalingg=Nz, z=Lz, y=Ly, and

filling up essentially the entire flow domain. Each of the two!=Tt, ~ where N=2R/(5W), ~L=y5W/(4R), and

subpatterns moves as a whole; their velocities are differentl = (5>/16) (W/R)*. Dropping the tildes in the notations of

and every elementary structufa bulge as well as a bump Vvariables, the resulting canonical form of the EE is

periodically collides with those of the other kind. In the col- 2 4\

lision of a bump with a bulgéor with a pair of neighboring M 0tV €(n Vi) =0. 2

bulges, the two structures pass throug_h each other simillarlyrhe control parameter in this equation is

to the well-known 1D Korteweg—de Vries solitons, returning

to their precollisional shapes and speeds after the interaction. e=(1/3) VAWR/5. (3
Studies of wavy film flows on solid surface&he

“Kapitza problem”) have a considerable history. However, Equations(1) and(2) have beemeriveddirectly from the

the nonlinear dynamics of wavy films is far from being fully fundamental NS equations by using an iterative procedure

understood(see, e.g.[2]; see[3,4] for recent progress re- which is a variation of the so-called multiparameter pertur-

views). Fortunately, the nonlinear coupled-PDE Navier- bation approaclisee, e.g.[5,3], and references therein; an

Stokes(NS) problem, additionally complicated with a free earlier, more limited application of multiple independent per-

boundary, can be reduced to simplgwproximatedescrip-  turbation parameters appears, e.g.[Gp. In addition to its

tions of the wave dynamics for certain domains of the paleading to the most general EE, another advantage of this

rameter space. In the most favorable cases, such a descrigchnique is that it yields the least restrictive conditions of

tion reduces to asingle partial differential equation theory validity. For the present case, they require that the

governing the evolution of film thickness. Recently, (gee  following two dimensionless parameters belependently

[3]) have derived the most general evolution equatigg) small:

capable of all-time-valid description of a wavy liquid filfaf

a constant density, kinematic viscosityv, surface tension a=yR/W<1 and B=R’/W<L1. (4)

o, and average thicknedsy) flowing down an inclined

plane. Its dimensionless form is From the linear stability theory, the thirthird-order de-

rivative) term of Eq.(2) is purely dispersive, while all other
m+Aann,+50m,,~;cotdn,, +EWVin+ 2V29,=0. linear terms are dissipative. Different limiting cases of Eq.
(1) (2) reproduce some known nonlinear equations, such as the
2D version of the Korteweg—de VrigKdV) equation for
€—0 and the 2D version of the Kuramoto-Sivashingk)
*Electronic address: afrenkel@gp.as.ua.edu equation fore—o (see alsd7]). The 1D limit (9,=0) of
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Eq. (2) is essentially the well-studie@ee, e.g., references in
[8]) equation introduced by Kawahaé.

To exhibit interesting spatial behavior, a system should be
sufficiently “large.” For the periodicity domain
0<y=<2mp, 0<z=<2w(q in our simulations of Eq(2), we
chose 5<p=<16 and 16<q=<80. We used spatial grids of up
to 32p X 32q nodes, with the Fourier pseudospectral method
for spatial derivatives and with appropriate dealiasing. Time
marching was donén the Fourier spageby using Adams-
Bashforth and/or Runge-Kutta methods. We checked the re- [
sults by refining the space grids and time steps; by verifying
the volume conservatior],7dydz=0; etc. A typical simu-
lation run took~10° time steps.

The initial values ofy were chosen independently at each
node from the interva] —0.05,0.03 with uniform probabil-
ity distribution. Due to the dissipativity of E¢2), the system
evolves to an attractor, and so essentially “forgets” the ini- FIG. 1. Snapshots of the time-asymptotic film surface self-
tial conditions. For large values of the “dissipativity” pa- organized in simulations of E@2), for three different case®ulges
rametere>1, as soon as the flow approaches its asymptotienove down the page here; for convenience of presentation, differ-
state, the observed film surface is irregular in space and timent axes may have different scales; in reality, all “bulges” and
no spatial patterns are evident. The chaotic character of théumps” have small slopes and are nearly axisymmetri@)
attractor is indicated by thpositivelargest Liapunov expo- p=q=16, e '=50, and t=16x10°; (b (p,q)=(16,80),
nent[which we found, similar to Deissldil0], by numeri- € '=30, and t=5.98x10%; (c) (p,q)=(5,60), e *=25, and
cally integrating, along with Eq2), the linear equation that t=4.89x10°.
governs small disturbances of the solution of &]}]. This is
in accordance with the fact that in the limit>«, Eq. (2) one another. Also, the height of a bulgeegularly fluctu-
reduces to a 2D generalization of the Kuramoto-Sivashinskpates by an amount which is approximately equal to the am-
equation, whose solutions on extended spatial domains amitude of the bumps.
known to exhibit chaotic attractors. Regarding the transient As a bump runs into a bulge, the bulge’s amplitude in-
behavior on the way to the attractor, our simulations of Eqcreases momentarily, and then decreases again as a bump
(2) with small e corresponding to the parameter values of theseparates from the opposite side of the bulsee Fig. 3.
experiment[2] have shown agreemefiB] with their tran-  These interactions, unlike the irreversible coalescences of 1D
sient“3D” patterns and pattern transitions, including check- pulses—discovered ifL1] for a highly nonlinear dissipative
erboard patterns, synchronous instabilities, and solitargquation—appear to b&lmos) reversible, like the well-
waves. known interactions of 1D KdV solitons.

The main focus of the present paper is the presence of We note thabulgeformations similar to that of Fig. (&)
highly nontrivial orderly patterns in time-asymptotic stateswere discovered ifi7] for e =25 andp=64/(27) [they
for the strongly dispersiveasese<1. Figure 1 shows snap- postulated an equation of the forf® based on an equation
shots of the film surface at large times for three different setef the form (1) derived in Ref[12] for a partial case of an
of parameter valueqThe fact that by those times the sys- inclined film; in fact, that derivation wasot valid for the
tems have approached their asymptotic states is clear, e.gerticalfilm]. But the authors df7] seem to have overlooked
from the corresponding plots of the evolution of “energy” (perhaps, because of inadequacy of the graphics tools they
[ n?dydz[see Fig. 2 corresponding to Fig(al]. We will
speak of such numerically identified time-asymptotic states
as attractors although one needs to be cautious here: it is
known that such extended systems may sometimes exhibit
long transients. We find the largest Liapunov exponent to be
positive in this case as well, suggestingteangeattractor)

There are two subpatterns in Figal The V-shaped for-
mation consisting of 13 large-amplitude bulges aligned into
of bumps moves uniformly as well, but in the oppogiie
our reference framalirection.[Similar segregation of coher- ———
ent structures into two subpatterns of different amplitudes is 0 800 1600 2400 3200
also seen for the nonsquare, large-aspect-ratio domains, Figs. t
1(b) and Xc).] This collision-course movement is evident in
the cross-sectional space-time portrait shown in Fig. 3. Even FIG. 2. Evolution of the surface deviation “energy'7dydz
though each bump changes its shape in irregular manner, th@m an initial small-amplitude “white-noise” surface to an attrac-
bump maintains its identity. In particular, the bumps do nottor of Eq.(2). The snapshot Fig.(&) was taken near the end of this
seem to coalesce or break up, and just weakly interact withun. Note that the time unit here is 50 times that of E).

2

15

two straight lines moves as a whole downstream with a cer-
tain velocity, and the small-amplitude latticelike subpattern

“Energy” (arbitrary units)
95

(0]
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FIG. 3. Time sequence of instantaneous surface profiles in a g 4. Angle ¢ between(each line of bulges and the stream-
fixed vertical cross section normal to the filfior p=q=16, wise direction varies withe (p=q=16).
e~ 1=50; the time shown as 0 is in fact X@.0° counting from the
start of the rui In particular, it is evident that thgarge-amplitudg  latter term with the dispersive term, the characteristic ampli-
bulges move in one direction aridmall-amplitude bumps in the  tude and velocity of these solutions are found torbec and
opposite direction. c~1/L§ whereL is the characteristic length scale, which is

not uniquely determined by the KdV equatitB). However,

used the second, bump subpattern—and thus the entire comhe two dissipative terms of E¢R) will changeL  on a slow
plex, dynamical character of the two-component order.  time scale, until they balance each otlitis essential role

It is natural to inquire as to how the various quantities ofof the small dissipative terms was revealed in R@ffor the
the pattern scale witke. We variede ' between 25 and 1D casg. This selects the soliton df~ 1, which results in
305 forp=q=16. In one set of simulations, * was gradu- c¢~1 and n~1 as well, independent of. These estimates
ally decreased from 50 in relatively small steps diGallow  are clearly consistent with the numerical results for bulges
the system to “adiabatically” adjust to the new parameterreported above.
value, up toe~1=25—at which point the line formations of Motivated by the discovery of the second, small-
bulges break down. In another set of simulatioas! was  amplitude subpattern, we examined the possibility of a cor-
increased from 50 in steps of 10 or 15 upefo'=305. In all  responding second traveling-wave solution. If we transfer to
cases, we find that the characteristic width of the bulge aghe frame moving with aegativevelocity c=—a?, where
well as the bump is of the order of«) 1 independent of a is a(real constant, there are such solutions—with the non-
€. The amplitude of bulges is also constant]l, as are the linear term being as small as the dissipative ones. Indeed, the
velocity of bulges and that of bumps. Only the amplitude ofleading-order equation then ¥&?7,+a?#7,=0, which is the
bumps changes; it scales a%. well-known Helmholtz equation fof;,. There are solutions

The V-shaped formation of bulges retains its form when«sinlysinkz (J?+ K?=a?). The balance between titgmall
€ is changed from 1/30 to 1/305. However, ttebsolute  dissipative terms again determings-c~1, and the balance
value of the angle of each bulge line with the streamwise of the dissipative terms with the nonlinear term yields
axis decreases witl, probably approaching some asymp- 5~ e. We see that these length scale, amplitude, and velocity
totic value in the limite—0 (see Fig. 4; since there are no (including its sign agree with those observed for the bumps
parameters remaining in this limit, the asymptotic anglein the numerical experiments as described above. Note that
should be just 0). It might be possible to explain this depenour assumption of thenegativevelocity is essential: with a
dence by a theory of pairwise interaction of bulges througtpositive velocity, one arrives at thenodified Helmholtz
their (nonaxisymmetrig “tails” (similar to the theory{13]  equation, which does not have any oscillating solutions.

for 2D chemical-wave spirals There are onlyexponentialsolutions, which are unsuitable
Whene<1, the dissipative terms in E(R) can be treated here.[We note that the Helmholtz equation has axially sym-
as perturbations- € of the 2D KdV equation metric solutions as wellgcJg(ar) where Jg is the Bessel
function (r is the radial coordinaje This solution is only
net+ nn,+V29,=0. (5  weakly localized: it decays at spatial infinity as a power

rather than exponentially. There is no such localized solution
This equation does not seem to have any analytical solutionin the 1D caseg,=0.]
However, by transforming to a reference frame moving with  One would naturally like to find some known types of
a velocity c>0 [replacer, with (—c#,) in the equatiofy  patterns to which those reported here can be compared.
Petviashvili and Yan'ko14] numerically obtained a sta- There are several known casege, e.g., Ref.15], and ref-
tionary axially symmetric solitary-wave solution. By balanc- erences therejrof indefinitely longcoexistencef different
ing the first term with the nonlinear termy,~ 77,, and the  types of patterns. However, in those cases each of the coex-
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isting patterns is confined to its own spatial region: its con- As a general conclusion, numerical 2D simulations of a
stituent structures do not penetrate inside any “alien” pat-realistic evolution PDE signal that nonequilibrium dissipa-
tern region. In contrast, we have seen that the bumptive systems can spontaneously fonorperiodic, but never-
constantly pass through the region of bulges. Another posstheless highly ordered spatial patterf@$ compactly local-
bility would be to look at the bulges and bumps as twoized, solitonlike structurgswhich are of a remarkable
traveling waves. However, in contrast to usual cases, théomplexity. In particular, the novel patterns consist of
bulge “wave” is confined to an essentially 1D region, and subpatterns—each of a different amplitude and each moving

there is a constant nonlinear interaction with the wave ofS & whole with its own velocitypenetratingthrough one
bumps. another. Thus these subpatterns coexist as the constituent

Similar to Eq.(2), we have derived an equation for a film components of the overall—microscopicalipnsteadybut
flowing down a verticatylinder (see Ref[3] and references Macroscopically permanent—self-organized spatiotemporal
therein. In particular, one can see that if thgimensionless order characteristic of the system motion on such an attrac-

radiusb of the cylinder is not too smallb>8~1), the flow  Or-

is well approximated by the planar-film equatiéh). (With The particular dissipative-dispersive PDES and (2)
periodic boundary condition in the azimuthal direction; we have been consistently derived from the full Navier-Stokes

note that this also justifies our use sgfanwiseperiodic BCs ~ Problem to provide a controllably close approximation to the
in the numerical simulations. As to the streamwise BC, weevolution of a liquid film flowing down a vertical plane. The
believe the solution becomes essentially insensitive to theinconventional perturbative approach used in this derivation
specific type in the limit of large aspect ratidp, as, e.g., in has the a_d\_/antage of yielding the !east restrlctl\_/e_ condltl(_)ns
Fig. 1. It would be interesting to check this with spatial- Of the validity of the theory. To satisfy those validity condi-
evolution simulations, such as those already conducaeéyl  tons for a possibldterrestrial experiment deS|gqed to ob-
for a different EE that coincides with the nondispersive limit S€Tve patterns of the novel type on a film flowing down a

of the above-mentioned EE3].) One finds that withh vertical cylinder, the film liquid should be much more vis-
~1 mm, the cylinder(dimensional radius b—1 cm ar:)d cous than water; fortunately, suitable liquids are readily

under parametric conditions<1, 8<<1, ande<1, for the available.

waves(evolving as they propagate from the entrance end of We are grateful to I. Yakushin for technical assistance.
not-too-long a cylinder to its exit endo have enough time We have used computing facilities of the Alabama Super-
for approaching the attractor stage, the liquid should be sevecomputer Authority and NERSC of the Department of En-
eral hundred times as viscous as water. For example, it coulergy. This work was partly supported by DOE Grant No.

be glycerin with an admixture of water.
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