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The linear stability of a two-fluid shear flow with an insoluble surfactant on the flat interface is
investigated in the Stokes approximation. Gravity is neglected in order to isolate the Marangoni
effect of the surfactant. In contrast to all earlier studies of related fluid systems, we encounter~i! the
destabilization~here, of a shear flow! caused solely by the introduction of an interfacial surfactant
and~ii ! the destabilization~here, of a system with a surfactant! caused solely by the imposition of
a Stokes flow. Asymptotic long-wave expressions for the growth rates are obtained. ©2002
American Institute of Physics.@DOI: 10.1063/1.1483838#

Among instabilities of viscous two-fluid systems,1 the
Yih2 instability—driven by the interfacial jump in
viscosity—occurs only if a basic~shear! flow is present.
However, the Yih instability depends on inertial terms of the
Navier–Stokes equations. Instabilities which exist for ‘‘iner-
tialess,’’ Stokes flows, do not disappear if the basic flow is
turned off. Examples of such Stokes flow instabilities include
the gravitational Rayleigh–Taylor~RT! instability due to the
different densities in a horizontally extended two-fluid sys-
tem ~e.g., such as in Ref. 3! and the capillary Rayleigh in-
stability of the core-annular systems~as in Ref. 4!.

In the present Letter, we demonstrate what we believe is
the first example of a Stokes flow instability which does
disappear if the basic flow is stopped. For a range of two-
layer plane Couette–Poiseuille flows, it turns out that if there
is an insoluble surfactant present at the interface and the
surface tension depends on the surfactant concentration, the
flow is unstable to sufficiently long waves. However, the
system is stable to small disturbances of any wavelength if
the basic flow is absent. Perhaps even more surprisingly, we
encounter cases of stable surfactant-free flows which become
unstable if an interfacial surfactant is introduced.

There has been considerable interest in the instability of
multifluid film flows and the influence of surfactants since
they occur in many industrial and biomedical applications—
such as lubricated pipelining,1 coating in photography,5 and
the obstruction to airflow in the small airways of the lungs.6,7

The effect of insoluble surfactant on stagnant film systems
was always purely stabilizing.~See, e.g., Refs. 8–10. For a
broader survey of multifluid instabilities, see, e.g., the recent
papers Refs. 11 and 12.!

In this paper, we investigate the stability of two-layer
plane Couette–Poiseuille flow between two parallel plates
with one plate moving steadily, in a possible presence of a
uniform pressure gradient, and with an insoluble surfactant
monolayer on the interface between the two fluid layers. A

case of inertialess, Stokes flow, is considered with no exter-
nal forces~such as gravity, molecular van der Waals forces,
etc.!, so that if the surface tension is assumed constant, the
system is stable for all wave numbers.~For this, the plane
geometry is essential: in the core-annular geometry, even a
constant surface tension can be destabilizing due to azi-
muthal curvature of the interface.! Thus, in our model, the
instability is due solely to the interaction between the basic
flow and the surfactant monolayer.

The hints to an instability due to surfactant can be al-
ready seen in the recent work by Wei and Rumschitzki.13

However, they considered a core-annular flow, in which case
the instability is mainly due to the curvature effects men-
tioned above. Only a correction to that main instability is due
to the surfactant; in contrast, in our case the surfactant is the
sole agent driving the instability.

The exact formulation of the problem is as follows. Con-
sider two immiscible fluid layers between two infinite paral-
lel plates, as in Fig. 1 of Ref. 2. Let the basic flow be driven
by the combined action of an in-plane steady motion of one
of the plates and a constant pressure gradient parallel to the
plate velocity. It is well known that the basic ‘‘Couette–
Poiseuille’’ velocity profiles are steady and vary~quadrati-
cally! in the spanwise direction only, and the basic interface
between the fluids is flat. For simplicity, let the densities of
the two fluids be equal. Then gravity does not affect stability
of the basic flow, and is disregarded below. It is convenient
to use the reference frame of the unperturbed interface. Let
y* be the spanwise, ‘‘vertical,’’ coordinate~the symbol*
indicates a dimensional quantity!. Let the interface be aty*
50 and they* -axis directed from the thinner layer to the
thicker one; we will call this the ‘‘upward’’ direction~clearly,
since there is no gravity, the notions of ‘‘up’’ and ‘‘down’’ are
a matter of convention!. Thus,d1,d2 holds, whered1 and
d2 are the thicknesses of the lower and upper fluids, respec-
tively. The direction of the ‘‘horizontal’’x* -axis is chosen so

PHYSICS OF FLUIDS VOLUME 14, NUMBER 7 JULY 2002

LETTERS
The purpose of this Letters section is to provide rapid dissemination of important new results in the fields regularly covered by
Physics of Fluids. Results of extended research should not be presented as a series of letters in place of comprehensive articles.
Letters cannot exceed four printed pages in length, including space allowed for title, figures, tables, references and an abstract
limited to about 100 words.There is a three-month time limit, from date of receipt to acceptance, for processing Letter
manuscripts. Authors must also submit a brief statement justifying rapid publication in the Letters section.

L451070-6631/2002/14(7)/45/4/$19.00 © 2002 American Institute of Physics

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.160.6.61 On: Mon, 20 Oct 2014 14:31:59



that velocity of the lower plate, situated aty* 52d1 , is
2U1 if U1 is the relative speed of the interface and the lower
plate. The velocityU2 of the upper plate~situated aty*
5d2! is positive for the purely Couette flow; however, it
does not have to be positive in the presence of a pressure
gradient. For the Couette flow, in which the velocity profiles
are linear, it is easy to see that, in terms ofU, the velocity of
the upper plate relative to the lower plate~i.e.,U5U11U2!,
we have U15m2d1(m2d11m1d2)21U and U2

5m1d2(m2d11m1d2)21U, where m1 and m2 are the vis-
cosities of the lower and upper fluids, respectively. For the
more general~quadratic! Couette–Poiseuille flow, it is also
not difficult to expressU1 and U2 in terms of the two
‘‘physical’’ quantities, U and the basic pressure gradient;
however, we will not need these expressions.

As in Yih,2 the well-known Squire’s theorem allows us
to confine our consideration to two-dimensional perturbed
flows ~in the x* y* -plane!. The equation of the perturbed
interface isy* 5h* (x* ,t* ), and the Navier–Stokes and in-
compressibility equations governing the fluid motion in the
two layers are~with j 51 for the lower layer andj 52 for the
upper one!

rS ]vj*

]t*
1vj* "“* vj* D 52¹* pj* 1m j“* 2vj* , “* "vj* 50,

~1!

where“* 5(]/]x* ,]/]y* ), r is the density~of both fluids!,
vj* 5(uj* ,v j* ) is the fluid velocity with horizontal component
uj* and vertical componentv j* , andpj* is the pressure.

We use the ‘‘no-slip, no-penetration’’ boundary condi-
tions ~requiring zero relative velocities! at the plates:u1*
52U1 , v1* 50 at y* 52d1 ; and u2* 5U2 , v2* 50 at y*
5d2 . The interfacial boundary conditions are as follows.
The velocity must be continuous at the interface:@v* #1

250,
where@A#1

25A22A1 denotes the jump inA across the inter-
face, i.e., aty* 5h* (x* ,t* ). The interfacial balances of the
tangential and normal stresses taking into account the gradi-
ent of surface tension and the capillary jump in the normal
stress are

1

11hx*
* 2 @~12hx*

* 2
!m~uy*

* 1vx*
* !12hx*

* 2m~vy*
* 2ux*

* !#1
2

52
sx*

*

~11hx*
* 2

!1/2, ~2!

@~11hx*
* 2

!p* 22m~hx*
* 2ux*

* 2hx*
* ~uy*

* 1vx*
* !1vy*

* !#1
2

5
hx* x*

*

~11hx*
* 2

!3/2s* , ~3!

where s* is the surface tension. The kinematic interfacial
condition ish t*

* 5v* 2u* hx*
* . The surface concentration of

the insoluble surfactant on the interface,G* , obeys an equa-
tion ~see, e.g., Ref. 14! which for the one-dimensional case
becomes

]G*

]t*
1

]

]s* ~G* us* !1G* k* un* 5Ds

]2G*

]s* 2 , ~4!

where s* is the arclength along the interface~so that
]/]s* 5 (1/A11hx*

2)(]/]x* )!, us* and un* are the tangen-
tial and normal components of the surface velocity,k*
5hx* x*

* /(11hx*
* 2)3/2 is the interfacial curvature, andDs is

the surface molecular diffusivity of surfactant;Ds is usually
negligible and is discarded below. Since we only deal with
infinitesimal deviations of the concentrationG* from its ba-
sic valueG0 , we can linearize the surface tension depen-
dence on the surfactant concentration:s* 5s02E(G*
2G0), where s0 is the basic surface tension andE is a
constant.

We introduce dimensionless quantities as follows:
(x,y)5(x* ,y* )/d1, t5t* /(d1m1/s0), (u,v)5(u* ,v* )/
(s0/m1), p5p* /(s0/d1), G5G* /G0, ands5s* /s0. The
dimensionless velocity field of the basic Couette–Poiseuille
flow, with a flat interface,h50, and uniform concentration
of surfactant,Ḡ51 ~where the overbar indicates a basic-state
quantity!, is v̄150, ū1(y)5sy1qy2 ~for 21<y<0! and
ū2(y)5ū1(y)/m, v̄250 ~for 0<y<n, where 1<n5d2 /d1

andm5m2 /m1!. The constantss andq will be used in place
of the pressure gradient and the relative velocity of the plates
to characterize the basic flow. As will be seen below, the
stability depends only on the coefficients, the shear of the
basic velocity at the interface:s5Dū1(0), where D
5d/dy.

We consider the perturbed state with small deviations
from the basic flow:h5h̃, uj5ū j1ũ j , v j5 ṽ j , pj5 p̃ j and
G5Ḡ1G̃. It is convenient to introduce disturbance stream-
functions c̃ j such that ũ j5c̃ jy , and ṽ j52c̃ jx . We use

normal modes (h̃,c̃ j ,p̃ j ,G̃)5@h,f j (y), f j (y),g#eia(x2ct)

wherea is the wave number of the disturbance,g andh are
constants, andc5cR1 icI is the complex wave speed. The
growth rateg depends on the imaginary part ofc only: g
5acI . Linearizing the kinematic boundary condition yields
h̃ t(x,t)52c̃x(x,0,t). Henceh is expressed in terms of the
streamfunction:h5f1(0)/c. The linearization of the hori-
zontal and vertical components of the momentum equations
~1! yields

mjD~D22a2!f j2 ia f j5 ia
Re

Ca
@~ ū j2c!Df j2f jDūj #,

iamj~D22a2!f j1D f j52a2
Re

Ca
~ ū j2c!f j ,

wherem151, m25m, Re5rU1d1 /m1 is the Reynolds num-
ber, and Ca5m1U1 /s0 is the Capillary number. Eliminating
the pressure disturbancesf j from these equations yields the
well-known Orr–Sommerfeld equations for the streamfunc-
tions:

mj~D22a2!2f j5 ia
Re

Ca
@~ ū j2c!~D22a2!f j2f jD

2ū j #.

~5!

The disturbance streamfunctionsf j are subject to the
boundary conditions at the plates and at the interface. The
boundary conditions at the plates require

f1~21!5f18~21!5f2~n!5f28~n!50, ~6!
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where the symbol8 denotes differentiation with respect toy.
Continuity of velocity at the interface yields

f1~0!5f2~0!, f18~0!2f28~0!5
~12m!

m

s

c
f1~0!. ~7!

After linearization, the normal stress condition, Eq.~2!,
yields

mf2-~0!2f1-~0!23a2@mf28~0!2f18~0!#52 i
a3

c
f2~0!.

~8!

The linearized tangential stress condition, Eq.~3!, reads
mf29(0)2f19(0)1a2@mf2(0)2f1(0)#5 iM ag, whereM
5EG0 /s0 is the Marangoni number. We replace the constant
g in this equation by its expression from the linearized sur-

factant transport equation@derived from~4!#, G̃ t1ū1y(0)h̃x

1c̃1xy(x,0,t)50, whence g5(1/c) f18(0)1 (s/c2) f1(0).
As a result, the linearized tangential-stress balance condition
is written purely in terms of streamfunctions:

mf29~0!2f19~0!1a2@mf2~0!2f1~0!#

5 iM
a

c Ff18~0!1
s

c
f1~0!G . ~9!

For eacha, the linear ~in f j ! Eqs. ~5!–~9! constitute an
eigenvalue problem determining the~complex! phase veloc-
ity c.

In the limit of small wave numbers, and neglecting iner-
tia terms, the Orr–Sommerfeld equations~5! reduce to

D4f j50. ~10!

The general solutions aref j (y)5Aj1Bjy1Cjy
21D jy

3,
where the constantsAj , Bj , Cj andD j are determined, up to
a normalization factor, by the boundary conditions. Adopting
the normalizationA15A251 and satisfying the four~plate!
velocity conditions~6!, leaves onlyB1 andB2 undetermined,
with the streamfunctions expressed as

f1~y!511B1y1~2B123!y21~B122!y3, ~11!

f2~y!511B2y2S 2

n
B21

3

n2D y21S 1

n2 B21
2

n3D y3. ~12!

Then Eqs.~7!–~9! are transformed~assumingcÞ0! to the
following system of three equations forB1 , B2 , andc:

B12B25
s

c S 1

m
21D , ~13!

6B12
6

n2 mB22
12m

n3 2125
ia3

c
, ~14!

mS 2
4B2

n
2

6

n2D24B1165
iaM

c S B11
s

cD , ~15!

where we have neglected terms which are higher than the
leading-order terms by ordera2. All results below follow
from Eqs.~13!–~15!. We will show that, form,n2, the two-
fluid system is unstable ifsÞ0 ~providedMÞ0! and stable
if s50. @This suggests to one that the last term of Eq.~15! is
crucial for the destabilization.#

On using~13! to expressB2 in terms ofB1 , the quantity
B2 can be eliminated from both~14! and ~15!. Then B1 is
found in terms ofc from ~14! ~assumingmÞn2!. By substi-
tuting the resulting expression into Eq.~15!, a single qua-
dratic equation for the~phase velocity! c follows. Results for
c, B1 , andB2 are given in Tables I and II forsÞ0 ands
50, respectively, and are most readily verified by direct sub-
stitution into the system~13!–~15! or, for n5`, into its ana-
log described below. The equations have to be satisfied just
to the leading order in all cases but the one withsÞ0, n
,`, mÞ1, mode 2, in which cases the two leading orders
are satisfied. We have also included in the tables the results
for n5` which will be discussed below.

For all the cases presented in the tables, there are two
branches of solutions. Both modes are damped ifs50. For
sÞ0, the first mode grows form,1 ~and decays form.1!,
and the second one grows for 1,m,n2 ~and decays form
,1 as well as form.n2!; also, one of the modes is seen to

TABLE I. Parameters of normal modes~of wave numbera! for sÞ0 @n.1, mÞn2; w5m13mn13n21n3, c5m214mn16mn214mn31n4 and x
5(m21)2n2(n11)2#.

Case c B1 B2

n,` mÞ1 Mode 1
2i~n21!M

4~m21!
a

24i~m21!2s

~n21!~m2n2!M
a21

n2

m
B1

n,` mÞ1 Mode 2
22~m21!~n11!n2s

c
2

i~m2n2!wM

4~m21!c
a

1

2

m13n214n3

~n11!n2 2
iwcM

16n2xs
a 2

1

2

4m13mn1n3

mn~n11!
2

iwcM

16mxs
a

n,` m51 Mode2
1

6
~12i!

2 S~n21!n2Ms

~n11!3 D1/2

a1/2
2~n311!

n~n221!
B1

n5` Mode2
1

6
~12i!

2
~Ms!1/2 a1/2 2 2~11 i !~m21!S s

mMD 1/2

a21/2

TABLE II. The same as Table I but for cases withs50.

Case c B1 B2

n,` Mode 1 2
in3

12~m1n3!
a3

n~m2n2!

2~m1n3!M
a2 B1

n,` Mode 2 2
in~m1n3!M

c
a 22

m1n3

n~m2n2!
B1

n5` Mode 1 2
i

12
a3

1

12M
a4 a

n5` Mode 2 2 iM a 2 B1
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be growing if m51 or/andn5` ~and the other mode is
damped!. Thus, for allm,n2, there is always instability if
sÞ0, but the system is stable ifs50.

Note that the second mode forsÞ0 andmÞ1 hasc real
to the leading order ina. To find the leading-order growth
rate acI for this mode, we writec5c01c1a and Bj5Bj 0

1Bj 1a, and find the ordera corrections, in particularcI , as
shown in Table I.

For the casem51, sÞ0, the two normal-mode waves,
one growing and the other decaying, propagate in the oppo-
site directions along thex-axis. The growth rate form51
changes asa3/2 while it changes asa2 for the mÞ1 cases.
We conjecture that the nature of the singularity asm→1 is
such that the range ofa near a50 for which the mÞ1
asymptotics is good, shrinks to zero in the limit. Singularities
of this type are also encountered for the limitss→0 or M
→`. This issue cannot be resolved without going beyond
the long-wave approximation. The pertinent work is in
progress and the results will be published elsewhere.

Note that in the limitn5`, the eigenfunction~12! for
the upper fluid no longer applies; instead,f2(y)5e2ay(1
1yB2), which is the general~normalized! solution of (D2

2a2)2f250 satisfying the boundary conditionf2(`)50.
Following the same procedure, one arrives at equations simi-
lar to ~13!–~15!. The changes are as follows:a is added to
the right hand side of~13!; terms containingn disappear
from Eq. ~14!; and Eq. ~15! becomes22B122amB2

1a2(2m21)5 ( iaM )/c (B11s/c). This leads to the re-
sults given in the bottom lines of the tables, with the growth
rate dependence ona being different from the case of a
finite, no matter how large,n. @Thus, the long-wave results
obtained for the semi-infinite layer are not necessarily a good
approximation for any finite layer, even a very thick one.#
One can see that the phase velocity is independent of the
viscosity ratiom, and is proportional toa1/2, similarly to the
finite n case withm51.

The difference between the two disturbance modes can
be illuminated by considering the ratiog/h ~of the surfactant
concentration amplitude to displacement amplitude! for the
case of the plane Couette flow withm51 and largen. One
can see@sinceh5f1(0)/c51/c andg5B1 /c1s/c2's/c2#
that g/h's/c}6eip/4, where the negative sign corresponds
to the growing mode. Hence, for the growing mode, the sur-
factant concentration and the interface disturbance are out of
phase by approximately 5p/4, while for the decaying mode,
the phase shift isp/4. For the growing mode, the surfactant
concentration is a minimum, and thus the surface tension a
maximum, approximately where the lower layer, the film, is
thickest; and it is a maximum~surface tension minimum!
where the film is thinnest. Thus there is a surface tension
increase, and hence a flow, from troughs to peaks, which
clearly causes the thickness contrast to grow. In contrast, for
the stable mode, the spatial variations of the surfactant con-
centration and the interface are almost in phase, so there is
now a fluid flow in the film from its peaks to troughs. This
causes the disturbances to decay.

In conclusion, our investigation of the instability of a
two-liquid planar system with a monolayer of insoluble sur-

factant on the interface reveals that some systems which are
stable when stagnant can become unstable even in Stokes
regimes of slow flow, provided there is a nonzero shear of
velocity at the flat interface. Obviously, such instabilities can
be overlooked unless nonstagnant cases are considered. In
this respect, the instability uncovered in the present Letter is
similar to the well-known Yih instability.2 However, unlike
the Yih instability, the present one does not depend on effects
of inertia, and thus does not require invoking higher-order
corrections to the Stokes-flow approximation. Also, we be-
lieve this to be the first example of a system which is stable
without interfacial surfactant but unstable with the surfactant
present.

For the future work, it would be interesting to extend the
linear theory from small to all wave numbers.~This work is
in progress; the results will be published elsewhere.! As re-
gards the~weakly! nonlinear regimes, it is known4 that the
shear flow can lead to saturation of instabilities. For the
present instability, this would have an interesting twist that
the same factor which facilitates the growth of infinitesimal
disturbances at the early stages, later becomes a part of a
nonlinear mechanism which works to hinder, and to eventu-
ally arrest, the growth of disturbances.
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