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Stokes-flow instability due to interfacial surfactant
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The linear stability of a two-fluid shear flow with an insoluble surfactant on the flat interface is
investigated in the Stokes approximation. Gravity is neglected in order to isolate the Marangoni
effect of the surfactant. In contrast to all earlier studies of related fluid systems, we endouthir
destabilizationhere, of a shear flojwcaused solely by the introduction of an interfacial surfactant
and (ii) the destabilizatiorthere, of a system with a surfactactused solely by the imposition of

a Stokes flow. Asymptotic long-wave expressions for the growth rates are obtain@60®
American Institute of Physics[DOI: 10.1063/1.1483838

Among instabilities of viscous two-fluid systerhshe case of inertialess, Stokes flow, is considered with no exter-
Yih? instability—driven by the interfacial jump in nal forces(such as gravity, molecular van der Waals forces,
viscosity—occurs only if a basi¢sheay flow is present. etc), so that if the surface tension is assumed constant, the
However, the Yih instability depends on inertial terms of thesystem is stable for all wave numbe(§or this, the plane
Navier—Stokes equations. Instabilities which exist for “iner- geometry is essential: in the core-annular geometry, even a
tialess,” Stokes flows, do not disappear if the basic flow isconstant surface tension can be destabilizing due to azi-
turned off. Examples of such Stokes flow instabilities includemuthal curvature of the interfageThus, in our model, the
the gravitational Rayleigh—TayldRT) instability due to the instability is due solely to the interaction between the basic
different densities in a horizontally extended two-fluid sys-flow and the surfactant monolayer.
tem (e.g., such as in Ref.)3nd the capillary Rayleigh in- The hints to an instability due to surfactant can be al-
stability of the core-annular systen@s in Ref. 4. ready seen in the recent work by Wei and Rumschit2ki.

In the present Letter, we demonstrate what we believe islowever, they considered a core-annular flow, in which case
the first example of a Stokes flow instability which doesthe instability is mainly due to the curvature effects men-
disappear if the basic flow is stopped. For a range of twotioned above. Only a correction to that main instability is due
layer plane Couette—Poiseuille flows, it turns out that if thereto the surfactant; in contrast, in our case the surfactant is the
is an insoluble surfactant present at the interface and thsole agent driving the instability.
surface tension depends on the surfactant concentration, the The exact formulation of the problem is as follows. Con-
flow is unstable to sufficiently long waves. However, thesider two immiscible fluid layers between two infinite paral-
system is stable to small disturbances of any wavelength il plates, as in Fig. 1 of Ref. 2. Let the basic flow be driven
the basic flow is absent. Perhaps even more surprisingly, wiey the combined action of an in-plane steady motion of one
encounter cases of stable surfactant-free flows which beconwf the plates and a constant pressure gradient parallel to the
unstable if an interfacial surfactant is introduced. plate velocity. It is well known that the basic “Couette—

There has been considerable interest in the instability oPoiseuille” velocity profiles are steady and vafguadrati-
multifluid film flows and the influence of surfactants since cally) in the spanwise direction only, and the basic interface
they occur in many industrial and biomedical applications—between the fluids is flat. For simplicity, let the densities of
such as lubricated pipeliningcoating in photography,and  the two fluids be equal. Then gravity does not affect stability
the obstruction to airflow in the small airways of the lufids. of the basic flow, and is disregarded below. It is convenient
The effect of insoluble surfactant on stagnant film systemgo use the reference frame of the unperturbed interface. Let
was always purely stabilizindSee, e.g., Refs. 8-10. For a y* be the spanwise, “vertical,” coordinatéhe symbol*
broader survey of multifluid instabilities, see, e.g., the recenindicates a dimensional quantitytet the interface be at*
papers Refs. 11 and 12. =0 and they* -axis directed from the thinner layer to the

In this paper, we investigate the stability of two-layer thicker one; we will call this the “upward” directiokclearly,
plane Couette—Poiseuille flow between two parallel platesince there is no gravity, the notions of “up” and “down” are
with one plate moving steadily, in a possible presence of @ matter of convention Thus,d;<d, holds, whered,; and
uniform pressure gradient, and with an insoluble surfactantl, are the thicknesses of the lower and upper fluids, respec-
monolayer on the interface between the two fluid layers. Aively. The direction of the “horizontal’k* -axis is chosen so
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that velocity of the lower plate, situated gt =—d,, is

A. L. Frenkel and D. Halpern

where s* is the arclength along the interfadso that

—U, if U, is the relative speed of the interface and the lowerg/gs* = (1/y/1+ 5§ 2)(&/ﬁx*)), uy anduy are the tangen-

plate. The velocityU, of the upper platgsituated aty*
=d,) is positive for the purely Couette flow; however, it

tial and normal components of the surface velocity,
= 7% /(14 7523 is the interfacial curvature, aridy is

does not have to be positive in the presence of a pressuffe surface molecular diffusivity of surfactamy is usually
gradient. For the Couette flow, in which the velocity profiles negligible and is discarded below. Since we only deal with

are linear, it is easy to see that, in termd.hfthe velocity of
the upper plate relative to the lower pldie.,U=U,+U,),
we have U;=u,d;(ud;+puqd,) U and U,
= w105(uod;+ uqd,) “U, where u, and u, are the vis-

infinitesimal deviations of the concentratidff from its ba-
sic valuel'y, we can linearize the surface tension depen-
dence on the surfactant concentration® =oy—E(I'*
—TI'g), where g is the basic surface tension affdis a

cosities of the lower and upper fluids, respectively. For the;onstant.

more generalquadrati¢ Couette—Poiseuille flow, it is also
not difficult to expressU,; and U, in terms of the two
“physical” quantities, U and the basic pressure gradient;
however, we will not need these expressions.

We introduce dimensionless quantities as follows:
(x.y)=(x*,y*)/dy, t=t*/(diui/og), (uv)=(u*v*)/
(O-O//'l’l)! p:p*/((Toldl), F:F*lro, andO':(T*/O'(). The
dimensionless velocity field of the basic Couette—Poiseuille

As in Yih,? the well-known Squire’s theorem allows Us flow, with a flat interface.»=0, and uniform concentration
to confine our consideration to two-dimensional perturbedyf grfactant]” = 1 (where the overbar indicates a basic-state

flows (in the x*y*-plane. The equation of the perturbed
interface isy* = »* (x*,t*), and the Navier—Stokes and in-

quantity), is v;=0, U;(y)=sy+qy? (for —1<y=<0) and

Uy(y)=uy(y)/m, v,=0 (for O<y=<n, where I =n=d,/d;

compressibility equations governing the fluid motion in the gndm= 4, /u,). The constants andq will be used in place

two layers ardwith j =1 for the lower layer angl=2 for the
upper ong

V*2y¥
J 1

+v]*-V*vJ*>——V*pJ*+,uj V*.vi=0,

D

whereV* = (d/dx* ,dl9y*), p is the densityof both fluids,
Vi =(uf ,v}) is the fluid velocity with horizontal component
u; and vertical component; , andp* is the pressure.

We use the “no-slip, no-penetration” boundary condi-
tions (requiring zero relative velociti¢sat the platesuy
=—U,, v7=0 aty* dy; andu; =U,, v5=0 aty*
=d,. The interfacial boundary conditions are as follows.
The velocity must be continuous at the interfape*.]izo,
where[Aﬁ:Az—Al denotes the jump iA across the inter-
face, i.e., ay* = »* (x*,t*). The interfacial balances of the

*
Vi
p (9t*

tangential and normal stresses taking into account the grad?—
ent of surface tension and the capillary jump in the normal

stress are

[(1= 72 Ul +ve) + 27l (vl —u) 13

1+7]:*2
*
o @
=TT w212
(1+7]:*)1/2
2 2
[(1+ﬂ:*)p*—ZM(ﬂ:*U:*—n:*(u;ﬁrv:*ﬁv;*)]f
*
S — @

2 g
(1+ 7]:* )3/2

where o* is the surface tension. The kinematic interfacial
condition is 7}, =v* —u* n}, . The surface concentration of
the insoluble surfactant on the interfaé#;,, obeys an equa-
tion (see, e.g., Ref. d4which for the one-dimensional case
becomes

P

ar*
R + _
at* = gs* (

I*uf)+T*«*u}=D

(4)

of the pressure gradient and the relative velocity of the plates
to characterize the basic flow. As will be seen below, the
stability depends only on the coefficiesit the shear of the
basic velocity at the interfaces=Du;(0), where D
=d/dy.

We consider the perturbed state with small deviations
from the basic flown=7, uj=u;+T;, v;=7;, p;=P; and
I'=I'+T. It is convenient to introduce disturbance stream-
functions ¥; such thatli;=;,, and%;=—;,. We use
normal modes %,%;,p;,I')=[h,¢;(y),f;(y),gle"** <V
wherea is the wave number of the disturbangeandh are
constants, and=cg+ic, is the complex wave speed. The
growth ratey depends on the imaginary part ofonly: y
= ac, . Linearizing the kinematic boundary condition yields
T(x,t)=— P, (x,01). Henceh is expressed in terms of the
treamfunctionh= ¢4(0)/c. The linearization of the hori-
|zontal and vertical components of the momentum equations
(1) yields

y .. . Re __ —
mJD(D - )(ﬁj—lafj—lac—a[(uj—C)DﬁbJ_¢]DU1]!

Re
iamj(Dz—a2)¢j+ij=—aza(Uj—C)(ﬁj,

wherem;=1, my,=m, Re=pU,d,/u, is the Reynolds num-
ber, and C& u,U 4 /0y is the Capillary number. Eliminating
the pressure disturbancésfrom these equations yields the
well-known Orr—Sommerfeld equations for the streamfunc-
tions:

R
oL@ 0)(D%= a?) 6~ 47T
©

The disturbance streamfunctioq§ are subject to the
boundary conditions at the plates and at the interface. The
boundary conditions at the plates require

$1(—1)=p1(=1)= po(n) = ¢5(n) =0,

mj(Dz—a2)2¢j=ia

(6)
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TABLE |. Parameters of normal modéef wave numbera) for s#0 [n>1, m#n?, g=m+3mn+3n?+n3, y=m?+4mn+6mrP+4mn*+n* and y

=(m—1)%n?(n+1)?].

Case c B, B,
—i(n—1M —4i(m—1)%s n?
w 1 Mode 1 7 - Z
n= m* ode Am-1) ¢ n—D(m-mM & ' m ot
oo me1 Mode 2 —2(m—1)(n+1)nzs_i(m—nz)cpM N 1 m+3n2+4n3_ ipyM . 1 4m+3mn+n3_ iyM Y
I 4m-1)y 2  (n+n? 16n%ys 2 mn(n+1) 16mys
. _ L= (n—1)n’Ms\*2 2(n+1)
n< m=1 Mode} — (W) a2 D B,
) 1/2
e Mode! i(1f|)(,\/ls)1,2al,2 2 —(1+i)(m—1)(m> 12
where the symbol denotes differentiation with respectyo s/1
Continuity of velocity at the interface yields 17 Bo={ 71, (13
$1(0)=620), 10— dy0)= 250 @) 6 1w __idd
= s — = — . |l
! 2 ! 2 m c ! 681—?m82—?—12=7, (14)
After linearization, the normal stress condition, E@),
yields 4B, 6 AB. 46— iaM B S 15
3 B T e

"

M5 (0) — ¢7(0) — 3’ [Mep3(0) — ¢1(0)]= —i % #2(0).
8

The linearized tangential stress condition, E8), reads
M¢3(0)— ¢1(0)+ a’[mp,(0)— ¢1(0)]=iM ag, whereM

where we have neglected terms which are higher than the
leading-order terms by order?. All results below follow
from Egs.(13)—(15). We will show that, fom<n?, the two-
fluid system is unstable g+ 0 (providedM # 0) and stable

=ET'y/ 0y is the Marangoni number. We replace the constantf s=0.[This suggests to one that the last term of &) is
g in this equation by its expression from the linearized sur-crucial for the destabilizatioh.

factant transport equatiduerived from(4)], I'1+u;,(0) 7
+ley(x,0,t) =0, whence g=(1/c) ¢;(0)+ (s/c?) ¢1(0).
As a result, the linearized tangential-stress balance conditi
is written purely in terms of streamfunctions:

M3(0) — $1(0) + a’[Md,(0) — $1(0)]

9

al S
=IM <1 ¢1(0)+ = $1(0) .
For eache, the linear(in ¢;) Egs. (5)—(9) constitute an
eigenvalue problem determining theompleX phase veloc-
ity c.

In the limit of small wave numbers, and neglecting iner-
tia terms, the Orr—Sommerfeld equatiai®s reduce to

D*;=0. (10

The general solutions are;(y)=A;+B;y+C;y*+D,y?,
where the constan; , B;, C; andD; are determined, up to

On using(13) to expresB, in terms ofB;, the quantity
B, can be eliminated from botfl4) and (15). ThenB; is
found in terms ofc from (14) (assumingn#n?). By substi-

oﬂjting the resulting expression into E@L5), a single qua-

dratic equation for th¢phase velocityc follows. Results for

¢, By, andB, are given in Tables | and Il fos#0 ands

=0, respectively, and are most readily verified by direct sub-
stitution into the systenil3)—(15) or, for n=<, into its ana-

log described below. The equations have to be satisfied just
to the leading order in all cases but the one wsth0, n

<o, m# 1, mode 2, in which cases the two leading orders
are satisfied. We have also included in the tables the results
for n=o which will be discussed below.

For all the cases presented in the tables, there are two
branches of solutions. Both modes are dampes=D. For
s#0, the first mode grows fan<1 (and decays fom>1),
and the second one grows foxin<n? (and decays fom
<1 as well as fom>n?); also, one of the modes is seen to

a normalization factor, by the boundary conditions. AdoptingTABl_E L. The same as Table | but for cases witk 0

the normalizatiorA;=A,=1 and satisfying the foufplate
velocity conditiong6), leaves onlyB; andB, undetermined,
with the streamfunctions expressed as

$1(y)=1+Byy+(2B;—3)y*+(B;—2)y?, (11

2 3 5 1 2 3
ho(y)=1+Byy— ﬁBz"'F yo+ sz"'m ye. (12

Then Egs.(7)—(9) are transformedassumingc#0) to the
following system of three equations f&;, B,, andc:

Case c B, B,
in3 —n2
n<o Mode 1 - n ol n(m=-n" o? 1
12(m+n3) 2(m+n%M
H 3 3
n<o Mode 2 _wa _p M B,
14 n(m—n)
i 1
n=o Mode 1 —— a8 4 a
2 oM @
n=o Mode 2 —iM «a 2 B,
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be growing ifm=1 or/andn=< (and the other mode is factant on the interface reveals that some systems which are

damped. Thus, for allm<n?, there is always instability if ~stable when stagnant can become unstable even in Stokes

s#0, but the system is stable $& 0. regimes of slow flow, provided there is a nonzero shear of
Note that the second mode fe# 0 andm#1 hasc real  velocity at the flat interface. Obviously, such instabilities can

to the leading order inv. To find the leading-order growth be overlooked unless nonstagnant cases are considered. In

rate ac, for this mode, we writec=cy+c a0 andB;=Bj,  this respect, the instability uncovered in the present Letter is

+Bj1, and find the ordew corrections, in particulac;, as  similar to the well-known Yih instability. However, unlike

shown in Table I. the Yih instability, the present one does not depend on effects
For the casan=1, s+#0, the two normal-mode waves, of inertia, and thus does not require invoking higher-order

one growing and the other decaying, propagate in the oppaorrections to the Stokes-flow approximation. Also, we be-

site directions along th&-axis. The growth rate fom=1 lieve this to be the first example of a system which is stable

changes as®/? while it changes as for them+1 cases. without interfacial surfactant but unstable with the surfactant

We conjecture that the nature of the singularitynas>1 is  present.

such that the range of near «=0 for which them#1 For the future work, it would be interesting to extend the

asymptotics is good, shrinks to zero in the limit. Singularitieslinear theory from small to all wave numbef3his work is

of this type are also encountered for the linsts:0 or M in progress; the results will be published elsewhess. re-

—o. This issue cannot be resolved without going beyondgards the(weakly) nonlinear regimes, it is knowrthat the

the long-wave approximation. The pertinent work is inshear flow can lead to saturation of instabilities. For the

progress and the results will be published elsewhere. present instability, this would have an interesting twist that
Note that in the limith=«, the eigenfunctior(12) for the same factor which facilitates the growth of infinitesimal

the upper fluid no longer applies; insteagl(y)=e “Y(1 disturbances at the early stages, later becomes a part of a

+yB,), which is the generalnormalized solution of [D? nonlinear mechanism which works to hinder, and to eventu-

—a?)?¢,=0 satisfying the boundary conditiog,(>)=0. ally arrest, the growth of disturbances.

Following the same procedure, one arrives at equations simi-

lar to (13)—(15). The changes are as followa:is added to

the right hand side of13); terms containingn disappear ACKNOWLEDGMENT

fron; Eq. (14); and Eq. (15 becomes—2B;—2amB, The authors gratefully acknowledge receiving a draft of

+a“(2m—1)= (iaM)/c(By+s/c). This leads to the re- Ref 13.

sults given in the bottom lines of the tables, with the growth

rate dependence oa being different from the case of a

finite, no matter how largen. [Thus, the long-wave results !p. D. Joseph and Y. Renardfundamentals of Two-Fluid Dynamics

obtained for the semi-infinite layer are not necessarily a good (Springer, New York, 1994.Vol. I. o _

approximation for any finite layer, even a very thick dne. 22378(1;217) Instability due to viscosity stratification,” J. Fluid MecR7,

One can see that the phase velocity is independent of th%. Halperﬁ and A. L. Frenkel, “Saturated Rayleigh—Taylor instability of

viscosity ratiom, and is proportional ter*’?, similarly to the an oscillating Couette film flow,” J. Fluid Mecht46, 67 (2007).

finite n case withm=1. 4A. L. Frenkel, A. J. Babchin, B. G. Levich, T. Shlang, and G. I. Sivashin-

; ; sky, “Annular flow can keep unstable flow from breakup: Nonlinear satu-
The difference between the two disturbance modes can’ o of capillary instability.” J. Clim 115, 225 (1987,

be ”lumina_ted by co_nsidering_the ratigh (of the _s;urfactant SLiquid Film Coating edited by S. F. Kistler and P. M. Schweiz&hap-
concentration amplitude to displacement amplijufite the man and Hall, London, 1997
case of the plane Couette flow with=1 and largen. One ®D. Halpern and J. B. Grotberg, “Surfactant effects on fluid elastic insta-
can See{sinceh: ¢1(0)/C: 1/c andg: B]_/C'f' S/CZNS/CZJ Ejlgt(lzis Et]gilil_lg |2In791d(I|gegX:I3b|e tubes: A model of airway closure,” J. Bio-
~ i /4 § H ' )
that g/hNS/.C“ +e™, where the negative sign corresponds 7p_ R. ofis, M. Johnson, T. J. Pedley, and R. D. Kamm, “Role of pulmo-
to the growing mode. Hence, for the growing mode, the sur- nary surfactant in airway closure: A computational study,” J. Appl.
factant concentration and the interface disturbance are out 04‘;“?'8”5'”1323(}933' Effect of surface dynam f
. . . . J. Carroll and J. Lucassen, “Effect of surface dynamics on process o
phase by appro_X|mater75’4, Wh"e_for the decaymg mode, droplet formation from supported and free liquid cylinders,” J. Chem.
the phase shift isr/4. For the growing mode, the surfactant soc., Faraday Trans. 20, 1228(1974.
concentration is a minimum, and thus the surface tension §A. De Wit, D. Gallez, and C. I. Christov, “Nonlinear evolution equations
maximum, approximately where the lower |ayer, the film, is Icirggt?;n liquid films with insoluble surfactants,” Phys. Fluidg 3256
thickest; a”q it _IS a_ maximungsurface t_enS|0n minimum ~ 190, E. Jensen and J. B. Grotberg, “Insoluble surfactant spreading on a thin
where the film is thinnest. Thus there is a surface tension viscous film: Shock evolution and film rupture,” J. Fluid Me@40, 259
increase, and hence a flow, from troughs to peaks, which (1992. ' _ '
clearly causes the thickness contrast to grow. In contrast, forﬁdu%‘]{irl‘%s,;R*l'vDa‘Qj g’r‘]‘;ssé geé 3'?1&‘(”1"905% Long-scale evolution of thin
the Staple mode, th.e spatial variations OT the surfactant CON2E charry and E. J. Hinch, * ‘Phase diagram’ of interfacial instabilities in
centration and the interface are almost in phase, so there is two-layer Couette flow and mechanism of the long-wave instability,” J.
now a fluid flow in the film from its peaks to troughs. This Fluid Mech.414 195(2000.

. H. H. Wei and D. Rumschitzkiunpublishegl
causes the disturbances to decay' 4. A. Stone, “A simple derivation of the time-dependent convective-

|r‘ C_Or‘C|U3i0na our inve_Stigation of the in§tabi|ity of @ iffusion equations for surfactant transport along a deforming interface,”
two-liquid planar system with a monolayer of insoluble sur- Phys. Fluids A2, 111 (1990.



